Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.471
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446857

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Assuntos
Artérias , Benchmarking , Perfusão , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Annu Rev Med ; 75: 369-380, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37562417

RESUMO

Despite significant advances in the field of transplantation in the past two decades, current clinically available therapeutic options for immunomodulation remain fairly limited. The advent of calcineurin inhibitor-based immunosuppression has led to significant success in improving short-term graft survival; however, improvements in long-term graft survival have stalled. Solid organ transplantation provides a unique opportunity for immunomodulation of both the donor organ prior to implantation and the recipient post transplantation. Furthermore, therapies beyond targeting the adaptive immune system have the potential to ameliorate ischemic injury to the allograft and halt its aging process, augment its repair, and promote recipient immune tolerance. Other recent advances include expanding the donor pool by reducing organ discard, and bioengineering and genetically modifying organs from other species to generate transplantable organs. Therapies discussed here will likely be most impactful if individualized on the basis of specific donor and recipient considerations.


Assuntos
Imunomodulação , Transplante de Órgãos , Humanos , Tolerância Imunológica , Bioengenharia , Sobrevivência de Enxerto
3.
Circ Res ; 135(2): 320-331, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38832504

RESUMO

BACKGROUND: Vascular cognitive impairment due to cerebral small vessel disease is associated with cerebral pulsatility, white matter hypoperfusion, and reduced cerebrovascular reactivity (CVR), and is potentially improved by endothelium-targeted drugs such as cilostazol. Whether sildenafil, a phosphodiesterase-5 inhibitor, improves cerebrovascular dysfunction is unknown. METHODS: OxHARP trial (Oxford Haemodynamic Adaptation to Reduce Pulsatility) was a double-blind, randomized, placebo-controlled, 3-way crossover trial after nonembolic cerebrovascular events with mild-moderate white matter hyperintensities (WMH), the most prevalent manifestation of cerebral small vessel disease. The primary outcome assessed the superiority of 3 weeks of sildenafil 50 mg thrice daily versus placebo (mixed-effect linear models) on middle cerebral artery pulsatility, derived from peak systolic and end-diastolic velocities (transcranial ultrasound), with noninferiority to cilostazol 100 mg twice daily. Secondary end points included the following: cerebrovascular reactivity during inhalation of air, 4% and 6% CO2 on transcranial ultrasound (transcranial ultrasound-CVR); blood oxygen-level dependent-magnetic resonance imaging within WMH (CVR-WMH) and normal-appearing white matter (CVR-normal-appearing white matter); cerebral perfusion by arterial spin labeling (magnetic resonance imaging pseudocontinuous arterial spin labeling); and resistance by cerebrovascular conductance. Adverse effects were compared by Cochran Q. RESULTS: In 65/75 (87%) patients (median, 70 years;79% male) with valid primary outcome data, cerebral pulsatility was unchanged on sildenafil versus placebo (0.02, -0.01 to 0.05; P=0.18), or versus cilostazol (-0.01, -0.04 to 0.02; P=0.36), despite increased blood flow (∆ peak systolic velocity, 6.3 cm/s, 3.5-9.07; P<0.001; ∆ end-diastolic velocity, 1.98, 0.66-3.29; P=0.004). Secondary outcomes improved on sildenafil versus placebo for CVR-transcranial ultrasound (0.83 cm/s per mm Hg, 0.23-1.42; P=0.007), CVR-WMH (0.07, 0-0.14; P=0.043), CVR-normal-appearing white matter (0.06, 0.00-0.12; P=0.048), perfusion (WMH: 1.82 mL/100 g per minute, 0.5-3.15; P=0.008; and normal-appearing white matter, 2.12, 0.66-3.6; P=0.006) and cerebrovascular resistance (sildenafil-placebo: 0.08, 0.05-0.10; P=4.9×10-8; cilostazol-placebo, 0.06, 0.03-0.09; P=5.1×10-5). Both drugs increased headaches (P=1.1×10-4), while cilostazol increased moderate-severe diarrhea (P=0.013). CONCLUSIONS: Sildenafil did not reduce pulsatility but increased cerebrovascular reactivity and perfusion. Sildenafil merits further study to determine whether it prevents the clinical sequelae of small vessel disease. REGISTRATION: URL: https://www.clinicaltrials.gov/study/NCT03855332; Unique identifier: NCT03855332.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Circulação Cerebrovascular , Estudos Cross-Over , Citrato de Sildenafila , Humanos , Citrato de Sildenafila/uso terapêutico , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/efeitos adversos , Masculino , Feminino , Idoso , Método Duplo-Cego , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Circulação Cerebrovascular/efeitos dos fármacos , Pessoa de Meia-Idade , Cilostazol/uso terapêutico , Cilostazol/farmacologia , Cilostazol/efeitos adversos , Inibidores da Fosfodiesterase 5/uso terapêutico , Inibidores da Fosfodiesterase 5/efeitos adversos , Inibidores da Fosfodiesterase 5/farmacologia , Resultado do Tratamento , Fluxo Pulsátil/efeitos dos fármacos , Imageamento por Ressonância Magnética , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiopatologia
4.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38238074

RESUMO

The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Masculino , Animais , Feminino , Humanos , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Roedores , Mamíferos , Neurônios
5.
FASEB J ; 38(8): e23585, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661043

RESUMO

Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step toward determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0 h up to 14 days after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Healthy rats showed little damage beyond the initial microinjury and healed completely by 7 days without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6 h after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4 h. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Our results demonstrate that the cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.


Assuntos
Isquemia , Cirrose Hepática , Animais , Ratos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Isquemia/metabolismo , Isquemia/patologia , Fígado/metabolismo , Fígado/patologia , Terapia a Laser/métodos , Ratos Sprague-Dawley , Hepatócitos/metabolismo
6.
Circ Res ; 132(9): 1127-1140, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919600

RESUMO

BACKGROUND: Extracellular renal interstitial guanosine cyclic 3',5'-monophosphate (cGMP) inhibits renal proximal tubule (RPT) sodium (Na+) reabsorption via Src (Src family kinase) activation. Through which target extracellular cGMP acts to induce natriuresis is unknown. We hypothesized that cGMP binds to the extracellular α1-subunit of NKA (sodium-potassium ATPase) on RPT basolateral membranes to inhibit Na+ transport similar to ouabain-a cardiotonic steroid. METHODS: Urine Na+ excretion was measured in uninephrectomized 12-week-old female Sprague-Dawley rats that received renal interstitial infusions of vehicle (5% dextrose in water), cGMP (18, 36, and 72 µg/kg per minute; 30 minutes each), or cGMP+rostafuroxin (12 ng/kg per minute) or were subjected to pressure-natriuresis±rostafuroxin infusion. Rostafuroxin is a digitoxigenin derivative that displaces ouabain from NKA. RESULTS: Renal interstitial cGMP and raised renal perfusion pressure induced natriuresis and increased phosphorylated SrcTyr416 and Erk 1/2 (extracellular signal-regulated protein kinase 1/2)Thr202/Tyr204; these responses were abolished with rostafuroxin coinfusion. To assess cGMP binding to NKA, we performed competitive binding studies with isolated rat RPTs using bodipy-ouabain (2 µM)+cGMP (10 µM) or rostafuroxin (10 µM) and 8-biotin-11-cGMP (2 µM)+ouabain (10 µM) or rostafuroxin (10 µM). cGMP or rostafuroxin reduced bodipy-ouabain fluorescence intensity, and ouabain or rostafuroxin reduced 8-biotin-11-cGMP staining. We cross-linked isolated rat RPTs with 4-N3-PET-8-biotin-11-cGMP (2 µM); 8-N3-6-biotin-10-cAMP served as negative control. Precipitation with streptavidin beads followed by immunoblot analysis showed that RPTs after cross-linking with 4-N3-PET-8-biotin-11-cGMP exhibited a significantly stronger signal for NKA than non-cross-linked samples and cross-linked or non-cross-linked 8-N3-6-biotin-10-cAMP RPTs. Ouabain (10 µM) reduced NKA in cross-linked 4-N3-PET-8-biotin-11-cGMP RPTs confirming fluorescence staining. 4-N3-PET-8-biotin-11-cGMP cross-linked samples were separated by SDS gel electrophoresis and slices corresponding to NKA molecular weight excised and processed for mass spectrometry. NKA was the second most abundant protein with 50 unique NKA peptides covering 47% of amino acids in NKA. Molecular modeling demonstrated a potential cGMP docking site in the ouabain-binding pocket of NKA. CONCLUSIONS: cGMP can bind to NKA and thereby mediate natriuresis.


Assuntos
GMP Cíclico , Natriurese , ATPase Trocadora de Sódio-Potássio , Animais , Feminino , Ratos , Adenosina Trifosfatases/metabolismo , Biotina/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Natriurese/fisiologia , Ouabaína/farmacologia , Potássio/metabolismo , Ratos Sprague-Dawley , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38934117

RESUMO

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in a numerical increase in perfusion recovery and significantly higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-inhibited ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.

8.
Brain ; 147(7): 2428-2439, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38842726

RESUMO

Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aß-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.


Assuntos
Córtex Cerebral , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva , Tauopatias , Proteínas tau , Humanos , Masculino , Feminino , Tomografia por Emissão de Pósitrons/métodos , Idoso , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/fisiopatologia , Imageamento por Ressonância Magnética/métodos
9.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342687

RESUMO

The alteration of neural interactions across different cerebral perfusion states remains unclear. This study aimed to fulfill this gap by examining the longitudinal brain dynamic information interactions before and after cerebral reperfusion. Electroencephalogram in eyes-closed state at baseline and postoperative 7-d and 3-month follow-ups (moyamoya disease: 20, health controls: 23) were recorded. Dynamic network analyses were focused on the features and networks of electroencephalogram microstates across different microstates and perfusion states. Considering the microstate features, the parameters were disturbed of microstate B, C, and D but preserved of microstate A. The transition probabilities of microstates A-B and B-D were increased to play a complementary role across different perfusion states. Moreover, the microstate variability was decreased, but was significantly improved after cerebral reperfusion. Regarding microstate networks, the functional connectivity strengths were declined, mainly within frontal, parietal, and occipital lobes and between parietal and occipital lobes in different perfusion states, but were ameliorated after cerebral reperfusion. This study elucidates how dynamic interaction patterns of brain neurons change after cerebral reperfusion, which allows for the observation of brain network transitions across various perfusion states in a live clinical setting through direct intervention.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico , Perfusão , Circulação Cerebrovascular
10.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771245

RESUMO

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Assuntos
Encéfalo , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Descanso , Humanos , Masculino , Feminino , Adulto , Circulação Cerebrovascular/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Desempenho Psicomotor/fisiologia , Ritmo Circadiano/fisiologia , Nível de Alerta/fisiologia
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983869

RESUMO

Precise information on localized variations in blood circulation holds the key for noninvasive diagnostics and therapeutic assessment of various forms of cancer. While thermal imaging by itself may provide significant insights on the combined implications of the relevant physiological parameters, viz. local blood perfusion and metabolic balance due to active tumors as well as the ambient conditions, knowledge of the tissue surface temperature alone may be somewhat inadequate in distinguishing between some ambiguous manifestations of precancer and cancerous lesions, resulting in compromise of the selectivity in detection. This, along with the lack of availability of a user-friendly and inexpensive portable device for thermal-image acquisition, blood perfusion mapping, and data integration acts as a deterrent against the emergence of an inexpensive, contact-free, and accurate in situ screening and diagnostic approach for cancer detection and management. Circumventing these constraints, here we report a portable noninvasive blood perfusion imager augmented with machine learning-based quantitative analytics for screening precancerous and cancerous traits in oral lesions, by probing the localized alterations in microcirculation. With a proven overall sensitivity >96.66% and specificity of 100% as compared to gold-standard biopsy-based tests, the method successfully classified oral cancer and precancer in a resource-limited clinical setting in a double-blinded patient trial and exhibited favorable predictive capabilities considering other complementary modes of medical image analysis as well. The method holds further potential to achieve contrast-free, accurate, and low-cost diagnosis of abnormal microvascular physiology and other clinically vulnerable conditions, when interpreted along with complementary clinically evidenced decision-making perspectives.


Assuntos
Diagnóstico por Imagem/métodos , Programas de Rastreamento/métodos , Neoplasias Bucais/diagnóstico por imagem , Perfusão/métodos , Adulto , Idoso de 80 Anos ou mais , Algoritmos , Biópsia , Diagnóstico por Imagem/instrumentação , Detecção Precoce de Câncer , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Programas de Rastreamento/instrumentação , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Perfusão/instrumentação , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem
12.
Eur Heart J ; 45(3): 181-194, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37634192

RESUMO

BACKGROUND AND AIMS: Coronary flow capacity (CFC) is associated with an observed 10-year survival probability for individual patients before and after actual revascularization for comparison to virtual hypothetical ideal complete revascularization. METHODS: Stress myocardial perfusion (mL/min/g) and coronary flow reserve (CFR) per pixel were quantified in 6979 coronary artery disease (CAD) subjects using Rb-82 positron emission tomography (PET) for CFC maps of artery-specific size-severity abnormalities expressed as percent left ventricle with prospective follow-up to define survival probability per-decade as fraction of 1.0. RESULTS: Severely reduced CFC in 6979 subjects predicted low survival probability that improved by 42% after revascularization compared with no revascularization for comparable severity (P = .0015). For 283 pre-and-post-procedure PET pairs, severely reduced regional CFC-associated survival probability improved heterogeneously after revascularization (P < .001), more so after bypass surgery than percutaneous coronary interventions (P < .001) but normalized in only 5.7%; non-severe baseline CFC or survival probability did not improve compared with severe CFC (P = .00001). Observed CFC-associated survival probability after actual revascularization was lower than virtual ideal hypothetical complete post-revascularization survival probability due to residual CAD or failed revascularization (P < .001) unrelated to gender or microvascular dysfunction. Severely reduced CFC in 2552 post-revascularization subjects associated with low survival probability also improved after repeat revascularization compared with no repeat procedures (P = .025). CONCLUSIONS: Severely reduced CFC and associated observed survival probability improved after first and repeat revascularization compared with no revascularization for comparable CFC severity. Non-severe CFC showed no benefit. Discordance between observed actual and virtual hypothetical post-revascularization survival probability revealed residual CAD or failed revascularization.


Assuntos
Doença da Artéria Coronariana , Humanos , Radioisótopos de Rubídio , Estudos Prospectivos , Tomografia por Emissão de Pósitrons/métodos , Angiografia Coronária/métodos
13.
J Mol Cell Cardiol ; 192: 94-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754551

RESUMO

While exercise-mediated vasoregulation in the myocardium is understood to be governed by autonomic, myogenic, and metabolic-mediated mechanisms, we do not yet understand the spatial heterogeneity of vasodilation or its effects on microvascular flow patterns and oxygen delivery. This study uses a simulation and modeling approach to explore the mechanisms underlying the recruitment of myocardial perfusion and oxygen delivery in exercise. The simulation approach integrates model components representing: whole-body cardiovascular hemodynamics, cardiac mechanics and myocardial work; myocardial perfusion; and myocardial oxygen transport. Integrating these systems together, model simulations reveal: (1.) To match expected flow and transmural flow ratios at increasing levels of exercise, a greater degree of vasodilation must occur in the subendocardium compared to the subepicardium. (2.) Oxygen extraction and venous oxygenation are predicted to substantially decrease with increasing exercise level preferentially in the subendocardium, suggesting that an oxygen-dependent error signal driving metabolic mediated recruitment of flow would be operative only in the subendocardium. (3.) Under baseline physiological conditions approximately 4% of the oxygen delivered to the subendocardium may be supplied via retrograde flow from coronary veins.


Assuntos
Simulação por Computador , Circulação Coronária , Exercício Físico , Modelos Cardiovasculares , Miocárdio , Oxigênio , Exercício Físico/fisiologia , Humanos , Oxigênio/metabolismo , Miocárdio/metabolismo , Hemodinâmica , Consumo de Oxigênio , Coração/fisiologia , Vasodilatação
14.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652092

RESUMO

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Assuntos
Vesículas Extracelulares , Transplante de Coração , Macrófagos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Macrófagos/metabolismo , Masculino , Transplante de Coração/métodos , Glucose/metabolismo , Miocárdio/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Glicólise , Coração/fisiopatologia , Coração/fisiologia
15.
J Physiol ; 602(8): 1791-1813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532618

RESUMO

Previous studies have suggested that an extended period of ventilation before delayed cord clamping (DCC) augments birth-related rises in pulmonary arterial (PA) blood flow. However, it is unknown whether this greater rise in PA flow is accompanied by increases in left ventricular (LV) output and systemic arterial perfusion or whether it reflects enhanced left-to-right shunting across the ductus arteriosus and/or foramen ovale (FO), with decreased systemic arterial perfusion. Using an established preterm lamb birth transition model, this study compared the effect of a short (∼40 s, n = 11), moderate (∼2 min, n = 11) or extended (∼5 min, n = 12) period of initial mechanical lung ventilation before DCC on flow probe-derived perinatal changes in PA flow, LV output, total systemic arterial blood flow, ductal shunting and FO shunting. The LV output was relatively stable during initial ventilation but increased after DCC, with similar responses in all groups. Systemic arterial flow patterns displayed only minor differences during brief and moderate periods of initial ventilation and were similar after DCC. However, an increase in PA flow was augmented with an extended initial ventilation (P < 0.001), owing to an earlier onset of left-to-right ductal and FO shunting (P < 0.001), and was accompanied by a pronounced reduction in total systemic arterial flow (P = 0.005) that persisted for 4 min after DCC (P ≤ 0.039). These findings suggest that, owing to increased left-to-right shunting and a greater reduction in systemic arterial perfusion, an extended period of ventilation before DCC does not result in greater perinatal circulatory benefits than shorter periods of initial ventilation in the birth transition. KEY POINTS: Previous studies suggest that an extended period of initial ventilation before delayed cord clamping (DCC) augments birth-related rises in pulmonary arterial (PA) blood flow. It is unknown whether this greater rise in PA flow is accompanied by an increased left ventricular output and systemic arterial perfusion or whether it reflects enhanced left-to-right shunting across the ductus arteriosus and/or foramen ovale, with decreased systemic arterial perfusion. Anaesthetized preterm fetal lambs instrumented with central arterial flow probes underwent a brief (∼40 s), moderate (∼2 min) or extended (∼5 min) period of ventilation before DCC. Perinatal changes in left ventricular output were similar in all groups, but extended initial ventilation augmented both perinatal increases in PA flow, owing to earlier onset and greater left-to-right ductal and foramen ovale shunting, and perinatal reductions in total systemic arterial perfusion. Extended ventilation before DCC does not confer a greater perinatal circulatory benefit than shorter periods of initial ventilation.


Assuntos
Canal Arterial , Hipertensão Pulmonar , Gravidez , Feminino , Ovinos , Animais , Clampeamento do Cordão Umbilical , Pulmão/irrigação sanguínea , Artéria Pulmonar/fisiologia , Canal Arterial/fisiologia , Perfusão , Constrição
16.
Circulation ; 148(10): 808-818, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37463608

RESUMO

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Assuntos
Cardiomiopatia Hipertrófica , Hipertrofia Ventricular Esquerda , Humanos , Sarcômeros/genética , Imagem de Tensor de Difusão , Predisposição Genética para Doença , Mutação , Cardiomiopatia Hipertrófica/diagnóstico , Fenótipo , Biomarcadores , Fibrose
17.
Stroke ; 55(5): 1317-1325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572635

RESUMO

BACKGROUND: Computed tomography perfusion (CTP) imaging is regularly used to guide patient selection for mechanical thrombectomy (MT). However, the effect of MT in patients without salvageable tissue on CTP has not been investigated. The purpose of this study was to assess the effect of MT in patients with stroke without perfusion mismatch profiles. METHODS: This observational study analyzed patients with ischemic stroke consecutively treated between March 1, 2015, and January 31, 2022, triaged by multimodal-computed tomography undergoing MT. CTP lesion-core mismatch profiles were defined using a mismatch volume/ratio of ≥10 mL/1.2, respectively. The primary end point was the rate of functional independence at 90 days, defined as the modified Rankin Scale score of 0 to 2. Recanalization was evaluated with the modified Thrombolysis in Cerebral Infarction scale. The effect of baseline variables on functional outcome was assessed using multivariable logistic regression analysis. Outcomes of patients with and without CTP-mismatch profiles were compared using 1:1 propensity score matching. RESULTS: Of 724 patients who met the inclusion criteria of this retrospective observational study, 110 (15%) patients had no CTP mismatch and were analyzed. The median age was 74 (interquartile range, 62-80) years and 53% were women. Successful recanalization (modified Thrombolysis in Cerebral Infarction score, ≥2b) was achieved in 66% (73) and associated with functional independence at 90 days (adjusted odds ratio, 7.33 [95% CI, 1.22-43.70]; P=0.03). A significant interaction was observed between recanalization and age, as well as the extent of infarction, indicating MT to be most effective in patients <70 years and with a baseline Alberta Stroke Program Early Computed Tomography Score range between 3 and 7. These findings remained stable after propensity score matching, analyzing 152 matched pairs with similar rates of functional independence between patients with and without CTP-mismatch profiles (17% versus 23%; P=0.42). CONCLUSIONS: In patients without CTP-mismatch profiles defined according to the EXTEND (Extending the Time for Thrombolysis in Emergency Neurological Deficits) criteria, recanalization was associated with improved functional outcomes. This effect was associated with baseline Alberta Stroke Program Early Computed Tomography Score and age, but not with the time from onset to imaging.

18.
Stroke ; 55(1): 31-39, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134265

RESUMO

BACKGROUND: Quantitative susceptibility mapping (QSM) and dynamic contrast-enhanced quantitative perfusion (DCEQP) magnetic resonance imaging sequences assessing iron deposition and vascular permeability were previously correlated with new hemorrhage in cerebral cavernous malformations. We assessed their prospective changes in a multisite trial-readiness project. METHODS: Patients with cavernous malformation and symptomatic hemorrhage (SH) in the prior year, without prior or planned lesion resection or irradiation were enrolled. Mean QSM and DCEQP of the SH lesion were acquired at baseline and at 1- and 2-year follow-ups. Sensitivity and specificity of biomarker changes were analyzed in relation to predefined criteria for recurrent SH or asymptomatic change. Sample size calculations for hypothesized therapeutic effects were conducted. RESULTS: We logged 143 QSM and 130 DCEQP paired annual assessments. Annual QSM change was greater in cases with SH than in cases without SH (P=0.019). Annual QSM increase by ≥6% occurred in 7 of 7 cases (100%) with recurrent SH and in 7 of 10 cases (70%) with asymptomatic change during the same epoch and 3.82× more frequently than clinical events. DCEQP change had lower sensitivity for SH and asymptomatic change than QSM change and greater variance. A trial with the smallest sample size would detect a 30% difference in QSM annual change during 2 years of follow-up in 34 or 42 subjects (1 and 2 tailed, respectively); power, 0.8, α=0.05. CONCLUSIONS: Assessment of QSM change is feasible and sensitive to recurrent bleeding in cavernous malformations. Evaluation of an intervention on QSM percent change may be used as a time-averaged difference between 2 arms using a repeated measures analysis. DCEQP change is associated with lesser sensitivity and higher variability than QSM. These results are the basis of an application for certification by the US Food and Drug Administration of QSM as a biomarker of drug effect on bleeding in cavernous malformations. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03652181.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemorragia , Humanos , Estudos Prospectivos , Hemorragia/etiologia , Hemorragia/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/complicações
19.
Stroke ; 55(5): 1227-1234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488357

RESUMO

BACKGROUND: Recent trials confirmed the effectiveness of endovascular therapy in patients with large ischemic cores. Yet the optimal neuroimaging modalities to define large core remains unclear. We tried to address this question by comparing the functional outcomes in patients receiving thrombectomy selected by either noncontrast computed tomography Alberta Stroke Program Early Computed Tomography Score (ASPECTS) or computed tomography perfusion (CTP). METHODS: This study retrospectively selected patients enrolled in the International Stroke Perfusion Registry between August 2011 and April 2022. Patients with acute stroke with large vessel occlusion in anterior circulation treated with endovascular therapy were included. All received both CTP and noncontrast computed tomography. The primary outcome was defined as poor functional outcome represented by a modified Rankin Scale score of 5 to 6 at 3 months. Large cores were defined in terms of either (1) noncontrast computed tomography ASPECTS ≤5 or (2) core volume ≥70 mL on CTP. RESULTS: A total of 1115 patients were included in the analysis, of which 90 patients had ASPECTS ≤5 (8.1%) and 97 patients CTP core ≥70 mL (8.7%). A fair agreement between ASPECTS and CTP with a κ value of 0.31 (0.21-0.40) was found. Compared with patients with neither CTP nor ASPECTS large cores, those with only ASPECTS-defined large cores (ie, ASPECTS ≤5; n=56) did not have a higher adjusted odds of poor outcome (29%; odds ratio, 1.84 [0.91-3.73]; P=0.089). However, patients with CTP large core but not ASPECTS-defined large core (n=63) had a higher adjusted odds of poor outcome (60%; odds ratio, 3.91 [2.01-7.60]; P<0.001). In time-stratified subgroup analysis (>6 versus ≤6 hours), ASPECTS showed no discriminative difference between ≤5 and >5 in poor outcome for patients receiving endovascular therapy within 6 hours. CONCLUSIONS: CTP core ≥70 mL-defined large cores are more predictive of poor outcome than ASPECTS ≤5-defined core in endovascular therapy patients, particularly within 6 hours after stroke onset.

20.
Stroke ; 55(4): 1086-1089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362812

RESUMO

BACKGROUND: Spreading depolarization describes a near-complete electrical discharge with altered local cerebral blood flow. It is described in association with acute and chronic diseases like hemorrhagic stroke or migraine. Moyamoya vasculopathy is a chronic, progressive cerebrovascular disorder leading to cerebral hypoperfusion, hemodynamically insufficient basal collateralization, and increased cortical microvascularization. METHODS: In a prospective case series, we monitored for spontaneous spreading depolarization activity by using intraoperative laser speckle imaging for real-time visualization and measurement of cortical perfusion and cerebrovascular reserve capacity during cerebral revascularization in 4 consecutive patients with moyamoya. RESULTS: Spontaneous spreading depolarization occurrence was documented in a patient with moyamoya before bypass grafting. Interestingly, this patient also exhibited a marked preoperative increase in angiographic collateral vessel formation. CONCLUSIONS: The spontaneous occurrence of SDs in moyamoya vasculopathy could potentially provide an explanation for localized cortical infarction and increased cortical microvascular density in these patients.


Assuntos
Revascularização Cerebral , Transtornos Cerebrovasculares , Doença de Moyamoya , Humanos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Angiografia Cerebral , Circulação Cerebrovascular/fisiologia , Revascularização Cerebral/métodos , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA