Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Periodontal Res ; 58(4): 841-851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243354

RESUMO

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial inflammatory disease that leads to the destruction of supporting structures of the teeth. DNA damage-inducible transcript 3 (DDIT3) plays crucial roles in cell survival and differentiation. DDIT3 regulates bone mass and osteoclastogenesis in femur. However, the role of DDIT3 in periodontitis has not been elucidated. This research aimed to explore the role and mechanisms of DDIT3 in periodontitis. METHODS: DDIT3 gene knockout (KO) mice were generated using a CRISPR/Cas9 system. Experimental periodontitis models were established to explore the role of DDIT3 in periodontitis. The expression of DDIT3 in periodontal tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The alveolar bone phenotypes were observed by micro-CT and stereomicroscopy. The inflammation levels and osteoclast activity were examined by histological staining, immunostaining, and qRT-PCR. Bone marrow-derived macrophages (BMMs) were isolated to confirm the effects of DDIT3 on osteoclast formation and function in vitro. RESULTS: The increased expression of DDIT3 in murine inflamed periodontal tissues was detected. DDIT3 knockout aggravated alveolar bone loss and enhanced expression levels of inflammatory cytokines in murine periodontitis models. Increased osteoclast formation and higher expression levels of osteoclast-specific markers were observed in the inflamed periodontal tissues of KO mice. In vitro, DDIT3 deficiency promoted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and the bone resorption activity of mature osteoclasts. CONCLUSIONS: Our results demonstrate that DDIT3 deletion aggravated alveolar bone loss in experimental periodontitis through enhanced inflammatory reactions and osteoclastogenesis. The anti-inflammation and the inhibition of bone loss by DDIT3 in murine periodontitis provides a potential novel therapeutic strategy for periodontitis.


Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/patologia , Dano ao DNA , Inflamação/patologia , Osteoclastos/metabolismo , Periodontite/tratamento farmacológico , Ligante RANK/metabolismo
2.
J Periodontal Res ; 57(1): 131-141, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839547

RESUMO

INTRODUCTION: The functional interplay between cementum of the root and alveolar bone of the socket is tuned by a uniquely positioned 70-80 µm wide fibrous and lubricious ligament in a dentoalveolar joint (DAJ). In this study, structural and biomechanical properties of the DAJ, periodontal ligament space (PDL-space also known as the joint space), alveolar bone of the socket, and cementum of the tooth root that govern the biomechanics of a lipopolysaccharide (LPS)-affected DAJ were mapped both in space and time. METHODS: The hemi-maxillae from 20 rats (4 control at 6 weeks of age, 4 control and 4 LPS-affected at 12 weeks of age, 4 control and 4 LPS-affected at 16 weeks of age) were investigated using a hybrid technique; micro-X-ray computed tomography (5 µm resolution) in combination with biomechanical testing in situ. Temporal variations in bone and cementum volume fractions were evaluated. Trends in mineral apposition rates (MAR) in additional six Sprague Dawley rats (3 controls, 3 LPS-affected) were revealed by transforming spatial fluorochrome signals to functional growth rates (linearity factor - RW) of bone, dentin, and cementum using a fast Fourier transform on fluorochrome signals from 100-µm hemi-maxillae sections. RESULTS: An overall change in LPS-affected DAJ biomechanics (a 2.5-4.5X increase in tooth displacement and 2X tooth rotation at 6 weeks, no increase in displacement and a 7X increase in rotation at 12 weeks; 27% increase in bone effective strain at 6 weeks and 11% at 12 weeks relative to control) was associated with structural changes in the coronal regions of the DAJ (15% increase in PDL-space from 0 to 6 weeks but only 5% from 6 to 12 weeks compared to control). A significant increase (p < 0.05) in PDL-space between ligated and age-matched control was observed. The bone fraction of ligated at 12 weeks was significantly lower than its age-matched control, and no significant differences (p > 0.05) between groups were observed at 6 weeks. Cementum in the apical regions grew faster but nonlinearly (11% and 20% increase in cementum fraction (CF) at 6 and 12 weeks) compared to control. Alveolar bone revealed site-specific nonlinear growth with an overall increase in MAR (108.5 µm/week to 126.7 µm/week after LPS treatment) compared to dentin (28.3 µm/week in control vs. 26.1 µm/week in LPS-affected) and cementum (126.5 µm/week in control vs. 119.9 µm/week in LPS-affected). A significant increase in CF (p < 0.05) in ligated specimens was observed at 6 weeks of age. CONCLUSIONS: Anatomy-specific responses of cementum and bone to the mechano-chemo stimuli, and their collective temporal contribution to observed changes in PDL-space were perpetuated by altered tooth movement. Data highlight the "resilience" of DAJ function through the predominance of nonlinear growth response of cementum, changes in PDL-space, and bone architecture. Despite the significant differences in bone and cementum architectures, data provided insights into the reactionary effects of cementum as a built-in compensatory mechanism to reestablish functional competence of the DAJ. The spatial shifts in architectures of alveolar bone and cementum, and consequently ligament space, highlight adaptations farther away from the site of insult, which also is another novel insight from this study. These adaptations when correlated within the context of joint function (biomechanics) illustrate that they are indeed necessary to sustain DAJ function albeit being pathological.


Assuntos
Cemento Dentário , Lipopolissacarídeos , Animais , Maxila , Ligamento Periodontal/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
3.
J Struct Biol ; 205(2): 155-162, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639926

RESUMO

One strategy evolved by teeth to avoid irreversible damage is to move and deform under the loads incurred during mastication. A key component in this regard is the periodontal ligament (PDL). The role of the bone underlying the PDL is less well defined. We study the interplay between the PDL and the underlying alveolar bone when loaded in the minipig. Using an Instron loading device we confirmed that the force-displacement curves of the molars and premolars of relatively fresh minipig intact mandibles are similar to those obtained for humans and other animals. We then used this information to obtain 3D images of the teeth before and after loading the tooth in a microCT such that the load applied is in the third linear part of the force displacement curve. We observed that at many locations there is a complimentary topography of the cementum and alveolar bone surface, strongly suggesting an active interplay between the tooth and the bone during mastication. We also observed that the loaded tooth does not come into direct contact with the underlying bone surface. A highly compressed layer of PDL is present between the tooth and the bone. The structure of the bone in the upper furcation region has a unique appearance with little obvious microstructure, abundant pores that have a large size range and at many locations the bone at the PDL interface has a needle-like shape. We conclude that there is a close interaction between the tooth, the PDL and the underlying alveolar bone during mastication. The highly compressed PDL layer that separates the tooth from the bone may fulfill a key shock absorbing function.


Assuntos
Ligamento Periodontal/fisiologia , Animais , Cemento Dentário/diagnóstico por imagem , Cemento Dentário/fisiologia , Mandíbula/diagnóstico por imagem , Mandíbula/fisiologia , Ligamento Periodontal/diagnóstico por imagem , Suínos , Porco Miniatura , Dente/diagnóstico por imagem , Dente/fisiologia , Microtomografia por Raio-X
4.
J Cell Physiol ; 234(4): 4528-4539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30206934

RESUMO

Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.


Assuntos
Calcificação Fisiológica , Fator 2 de Diferenciação de Crescimento/biossíntese , Mecanotransdução Celular , Ligamento Periodontal/metabolismo , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Fator 2 de Diferenciação de Crescimento/genética , Homeostase , Humanos , Ligamento Periodontal/citologia , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Estresse Mecânico , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
5.
J Cell Physiol ; 234(5): 7149-7160, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370560

RESUMO

Fibroblast growth factor-2 (FGF-2) stimulates periodontal regeneration by a broad spectrum of effects on periodontal ligament (PDL) cells, such as proliferation, migration, and production of extracellular matrix. A critical factor in the success of periodontal regeneration is the rapid resolution of inflammatory responses in the tissue. We explored an anti-inflammatory effect of FGF-2 during periodontal regeneration and healing. We found that FGF-2 on mouse periodontal ligament cells (MPDL22) markedly downregulated CD40 expression, a key player of inflammation. In addition, FGF-2 inhibited CD40 signaling by the non-canonical nuclear factor-kappa B2 (NFκB2) pathway, resulting in decreased production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which have the potential to recruit immune cells to inflamed sites. Furthermore, in vivo treatment of FGF-2 enhanced healing of skin wounds by counteracting the CD40-mediated inflammation. These results reveal that FGF-2 has an important function as a negative regulator of inflammation during periodontal regeneration and healing.


Assuntos
Anti-Inflamatórios/farmacologia , Antígenos CD40/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Periodontite/prevenção & controle , Animais , Antígenos CD40/genética , Linhagem Celular , Modelos Animais de Doenças , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Subunidade p52 de NF-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
6.
J Formos Med Assoc ; 117(4): 308-315, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28528141

RESUMO

BACKGROUND/PURPOSE: Bioaggregates such as Portland cement (PC) can be an economical alternative for mineral trioxide aggregate (MTA) with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL) cells in microRNAs level. METHODS: PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM). Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. RESULTS: PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP), bone morphogenic protein (BMP), and dentin matrix protein 1 (DMP1) expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1) expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. CONCLUSION: This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed.


Assuntos
Cimentos Dentários/farmacologia , MicroRNAs/fisiologia , Ligamento Periodontal/citologia , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Diferenciação Celular , Células Cultivadas , Combinação de Medicamentos , Humanos , Óxidos/farmacologia , Silicatos/farmacologia , Regulação para Cima
7.
Cell Tissue Res ; 368(3): 551-561, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28247086

RESUMO

Bone morphogenetic protein 2 (BMP-2) has a critical function in bone and cartilage development and in repairing damaged organs and tissue. However, clinical use of BMP-2 at doses of 0.5-1 mg/ml for orthopedics has been associated with severe postoperative swelling requiring emergency surgical intervention. We determined whether a high concentration of BMP-2 induces inflammatory responses in macrophages and the suppression of osteogenesis in hMSCs. We obtained human periodontal ligament stem cells and bone marrow stem cells from the maxilla, i.e., human mesenchymal stem cells (hMSCs), from the periodontal ligament of extracted third molar teeth and from the bone marrow of the maxilla, respectively. Osteogenic differentiation was measured by alkaline phosphatase activity and alizarin red S staining. Proteins were assessed by flow cytometry, enzyme-linked immunosorbent assay, Western blot and immunocytochemistry. Changes of gene expression were measured by reverse transcription plus the polymerase chain reaction (RT-PCR) and real-time PCR. A high BMP-2 concentration inhibited the early stages of osteogenesis in hMSCs. Co-culturing THP-1 cells (human monocytic cells) with hMSCs reduced the late stages of osteogenesis compared with those seen in hMSCs alone. In addition, high-dose BMP-2 induced the expression of inflammatory cytokines in THP-1 cells and the expression of the anti-inflammatory cytokine tumor-necrosis-factor-α-inducible gene 6 protein (TSG-6) in hMSCs. Consistent with the anti-inflammatory effects of hMSCs when co-cultured with THP-1 cells, interleukin-1ß expression was downregulated by TSG-6 treatment of THP-1 cells. Our findings suggest that a high BMP-2 concentration triggers inflammation that causes inflammatory cytokine release from THP-1 cells, leading to the suppression of osteogenesis, whereas TSG-6 secreted by hMSCs suppresses inflammatory reactions through p38 and ERK in the mitogen-activated protein kinase pathway.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Moléculas de Adesão Celular/fisiologia , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/biossíntese , Humanos , Imunossupressores/farmacologia , Inflamação/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Monócitos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Cell Biochem ; 117(10): 2423-34, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27335174

RESUMO

Human multipotent mesenchymal stromal cells (hMSCs) possess the ability to differentiate into osteoblasts, and they can be utilized as a source for bone regenerative therapy. Osteoinductive pretreatment, which induces the osteoblastic differentiation of hMSCs in vitro, has been widely used for bone tissue engineering prior to cell transplantation. However, the molecular basis of osteoblastic differentiation induced by osteoinductive medium (OIM) is still unknown. Therefore, we used a next-generation sequencer to investigate the changes in gene expression during the osteoblastic differentiation of hMSCs. The hMSCs used in this study possessed both multipotency and self-renewal ability. Whole-transcriptome analysis revealed that the expression of zinc finger and BTB domain containing 16 (ZBTB16) was significantly increased during the osteoblastogenesis of hMSCs. ZBTB16 mRNA and protein expression was enhanced by culturing the hMSCs with OIM. Small interfering RNA (siRNA)-mediated gene silencing of ZBTB16 decreased the activity of alkaline phosphatase (ALP); the expression of osteogenic genes, such as osteocalcin (OCN) and bone sialoprotein (BSP), and the mineralized nodule formation induced by OIM. siRNA-mediated gene silencing of Osterix (Osx), which is known as an essential regulator of osteoblastic differentiation, markedly downregulated the expression of ZBTB16. In addition, chromatin immunoprecipitation (ChIP) assays showed that Osx associated with the ZBTB16 promoter region containing the GC-rich canonical Sp1 sequence, which is the specific Osx binding site. These findings suggest that ZBTB16 acts as a downstream transcriptional regulator of Osx and can be useful as a late marker of osteoblastic differentiation. J. Cell. Biochem. 117: 2423-2434, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Fatores de Transcrição/metabolismo , Fosfatase Alcalina/metabolismo , Apoptose , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp7 , Fatores de Transcrição/genética
9.
Odontology ; 104(1): 27-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25957627

RESUMO

Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Crescimento Neural/metabolismo , Ligamento Periodontal/citologia , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fenômenos Biomecânicos , Sobrevivência Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fosforilação , Pressão , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
10.
Bio Protoc ; 14(7): e4970, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618176

RESUMO

Periodontal disease is characterized by the destruction of the hard and soft tissues comprising the periodontium. This destruction translates to a degradation of the extracellular matrices (ECM), mediated by bacterial proteases, host-derived matrix metalloproteinases (MMPs), and other proteases released by host tissues and immune cells. Bacterial pathogens interact with host tissue, triggering adverse cellular functions, including a heightened immune response, tissue destruction, and tissue migration. The oral spirochete Treponema denticola is highly associated with periodontal disease. Dentilisin, a T. denticola outer membrane protein complex, contributes to the chronic activation of pro-MMP-2 in periodontal ligament (PDL) cells and triggers increased expression levels of activators and effectors of active MMP-2 in PDL cells. Despite these advances, no mechanism for dentilisin-induced MMP-2 activation or PDL cytopathic behaviors leading to disease is known. Here, we describe a method for purification of large amounts of the dentilisin protease complex from T. denticola and demonstrate its ability to activate MMP-2, a key regulator of periodontal tissue homeostasis. The T. denticola dentilisin and MMP-2 activation model presented here may provide new insights into the dentilisin protein and identify potential therapeutic targets for further research. Key features • This protocol builds upon a method described by Cunningham et al. [1] for selective release of Treponema outer membrane proteins. • We adapted the protocol for the purification of biologically active, detergent-stable outer membrane protein complexes from large batch cultures of T. denticola. • The protocol involves large-scale preparative electrophoresis using a Model 491 Prep Cell. • We then use gelatin zymography to demonstrate the activity of the purified dentilisin complex by its ability to activate matrix metalloproteinase 2 (MMP-2).

11.
Regen Ther ; 25: 186-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230307

RESUMO

Introduction: The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods: Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results: The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion: Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.

12.
Regen Ther ; 26: 432-441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39045575

RESUMO

Introduction: Periodontal disease is a common oral infection which affects the tooth-supportive tissues directly. Considering the limitation of present regenerative treatments for severe periodontal cases, cytotherapies have been gradually introduced. Human periodontal ligament-derived mesenchymal stromal cells (hPDLMSCs), while identified as one of the promising cell sources for periodontal regenerative therapy, still hold some problems in the clinical application especially their limited life span. To solve the problems, human induced pluripotent stem cells (hiPSCs) are taken into consideration as a robust supply for hPDLMSCs. Methods: The induction of hPDLMSCs was performed based on the generation of neural crest-like cells (NCLCs) from hiPSCs. Fibronectin and laminin were tested as coating materials for NCLCs differentiation when following previous protocol, and the characteristics of induced cells were identified by flow cytometry and RT-qPCR for evaluating the induction efficiency. Subsequently, selected dental ectoderm signaling-related cytokines were applied for hPDLMSCs induction for 14 days, and dental mesenchyme-related genes, dental follicle-related genes and hPDL-related genes were tested by RT-qPCR for the evaluation of differentiation. Results: Compared to the 58% in laminin-coated condition, fibronectin-coated condition had a higher induction efficiency of CD271high cells as 86% after 8-day induction, while the mesenchymal potential of induced NCLCs was similar between two coating materials.It was shown that the gene expressions of dental mesenchyme, dental follicles and hPDL cells were significantly enhanced with the stimulation of the combination with fibroblast growth factor 8b (FGF8b), FGF2, and bone morphogenetic protein 4 (BMP4). Conclusion: FN coating was more effective in NCLCs induction, and the FGF8b+FGF2+BMP4 growth factor cocktail was effective in hPDLMSC-like cell generation. These findings underscored the likely regenerative potential of hiPSCs as an applicable and promising curative strategy for periodontal diseases.

13.
J Dent Res ; 103(9): 937-947, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39104161

RESUMO

Alveolar bone (AB) remodeling, including formation and absorption, is the foundation of orthodontic tooth movement (OTM). However, the sources and mechanisms underlying new bone formation remain unclear. Therefore, we aimed to understand the potential mechanism of bone formation during OTM, focusing on the leptin receptor+ (Lepr+) osteogenitors and periodontal ligament cells (PDLCs). We demonstrated that Lepr+ cells activated by force-induced PDLC apoptosis served as distinct osteoprogenitors during orthodontic bone regeneration. We investigated bone formation both in vivo and in vitro. Single-cell RNA sequencing analysis and lineage tracing demonstrated that Lepr represents a subcluster of stem cells that are activated and differentiate into osteoblasts during OTM. Targeted ablation of Lepr+ cells in a mouse model disrupted orthodontic force-guided bone regeneration. Furthermore, apoptosis and sequential fluorescent labeling assays revealed that the apoptosis of PDLCs preceded new bone deposition. We found that PDL stem cell-derived apoptotic vesicles activated Lepr+ cells in vitro. Following apoptosis inhibition, orthodontic force-activated osteoprogenitors and osteogenesis were significantly downregulated. Notably, we found that bone formation occurred on the compression side during OTM; this has been first reported here. To conclude, we found a potential mechanism of bone formation during OTM that may provide new insights into AB regeneration.


Assuntos
Apoptose , Osteogênese , Ligamento Periodontal , Receptores para Leptina , Técnicas de Movimentação Dentária , Ligamento Periodontal/citologia , Animais , Apoptose/fisiologia , Camundongos , Técnicas de Movimentação Dentária/métodos , Osteogênese/fisiologia , Células-Tronco/fisiologia , Regeneração Óssea/fisiologia , Osteoblastos , Diferenciação Celular , Processo Alveolar/citologia
14.
Heliyon ; 10(2): e24097, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293338

RESUMO

Objective: The three-dimensional morphological structures of periodontal ligaments (PDLs) are important data for periodontal, orthodontic, prosthodontic, and implant interventions. This study aimed to employ a deep learning (DL) algorithm to segment the PDL automatically in cone-beam computed tomography (CBCT). Method: This was a retrospective study. We randomly selected 389 patients and 1734 axial CBCT images from the CBCT database, and designed a fully automatic PDL segmentation computer-aided model based on instance segmentation Mask R-CNN network. The labels of the model training were 'teeth' and 'alveolar bone', and the 'PDL' is defined as the region where the 'teeth' and 'alveolar bone' overlap. The model's segmentation performance was evaluated using CBCT data from eight patients outside the database. Results: Qualitative evaluation indicates that the PDL segmentation accuracy of incisors, canines, premolars, wisdom teeth, and implants reached 100%. The segmentation accuracy of molars was 96.4%. Quantitative evaluation indicates that the mIoU and mDSC of PDL segmentation were 0.667 ± 0.015 (>0.6) and 0.799 ± 0.015 (>0.7) respectively. Conclusion: This study analysed a unique approach to AI-driven automatic segmentation of PDLs on CBCT imaging, possibly enabling chair-side measurements of PDLs to facilitate periodontists, orthodontists, prosthodontists, and implantologists in more efficient and accurate diagnosis and treatment planning.

15.
Med Eng Phys ; 116: 103986, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37230701

RESUMO

Periodontal ligament (PDL) attaches tooth root to the surrounding bone. Its existence between tooth and jaw bone is of utmost importance due to its significant role in absorbing and distributing physiological and para-physiological loading. According to the previous studies, various mechanical tests have been performed to characterize the mechanical properties of the PDL; however, all of them have been done at room temperature. To the best of our knowledge, this is the first study in which the testing was performed at body temperature. The present research was planned to measure the dependency of PDL's viscoelastic behavior on temperature and frequency. Three different temperatures, including body and room temperature, were opted to perform the dynamic compressive tests of the bovine PDL. In addition, a Generalized Maxwell model (GMM) was presented based on empirical outcomes. At 37 °C, amounts of loss factor were found to be greater than those in 25 °C, which demonstrates that the viscous phase of the PDL in higher temperatures plays a critical role. Likewise, by raising the temperature from 25 °C to 37 °C, the model parameters show an enlargement in the viscous part and lessening in the elastic part. It was concluded that the PDL's viscosity in body temperature is much higher than that in room temperature. This model would be functional for a more accurate computational analysis of the PDL at the body temperature (37 °C) in various loading conditions such as orthodontic simulations, mastication, and impact.


Assuntos
Ligamento Periodontal , Animais , Bovinos , Ligamento Periodontal/fisiologia , Temperatura , Estresse Mecânico , Fenômenos Biomecânicos , Viscosidade
16.
Saudi Dent J ; 35(6): 760-767, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37817788

RESUMO

Background: Periodontitis is a long-term, multifactorial inflammatory condition that is triggered by bacterial germs and interacts with the host's immune system. The unique attachment of fibrous tissue between the cementum and bone presents a challenge for periodontal regeneration. Aim: To achieve the lowest optimum dose of BMP-7 that helps in periodontal regeneration, involving newly formed cementum, PDL and bone. Materials and methods: Five healthy mongrel dogs were used for the study. A critical class III furcation defect was created using rotating burs. The bone defects (ten defects for each group) were allocated to one of the subsequent groups: (Group 1) control with the surgical defect only. (Group 2) Surgical defect implanted with hydrogel only (CS/ß-GP). (Group 3) Surgical defect implanted with CS/BMP-7 (50 ng/ml). (Group 4) Surgical defect implanted with CS/BMP-7 (100 ng/ml). Results: Histomorphometric and H&E analysis revealed a statistically significant difference in bone, PDL, and cementum regeneration defects filled with CS/BMP-7 (100 ng/ml) compared with other groups. Conclusion: The standard effective dose for BMP-7 use in periodontal regeneration is 100 ng/ml.

17.
Materials (Basel) ; 15(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160752

RESUMO

The periodontal ligament (PDL) is a cell-rich fibrous connective tissue supporting the tooth roots. The tissue helps to maintain homeostasis and exhibits regenerative and repairing ability, which is mediated by the heat shock protein (HSP). Here, we experimentally created PDL tissue with notable ability to regenerate hard tissue and evaluated it as a potential biomaterial. We immunohistochemically examined the mechanical load-induced HSP overexpression in mouse PDL. Following mechanical load application and release, HSP70 localization in the PDL was altered immediately, suggesting that the HSP70 function may differ with the timing of its expression in PDL. HSP70 expressed in the cytoplasm and nucleus of fibroblasts in PDL on the tension side not only participated in periodontium repair, but also functioned as a molecular chaperone during protein expression involved in osteogenesis to restructure injured tissue. This study highlights the potential of artificially created highly functional PDL tissues as biomaterials.

18.
Stem Cell Res Ther ; 13(1): 34, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090556

RESUMO

Management of avulsed teeth after replantation often leads to an unfavorable outcome. Damage to the thin and vulnerable periodontal ligament is the key reason for failure. Cell- or stem cell-based regenerative medicine has emerged in the past two decades as a promising clinical treatment modality to improve treatment outcomes. This concept has also been tested for the management of avulsed teeth in animal models. This review focuses on the discussion of limitation of current management protocols for avulsed teeth, cell-based therapy for periodontal ligament (PDL) regeneration in small and large animals, the challenges of de novo regeneration of PDL on denuded root in the edentulous region using a mini-swine model, and establishing a prospective new clinical protocol to manage avulsed teeth based on the current progress of cell-based PDL regeneration studies.


Assuntos
Ligamento Periodontal , Avulsão Dentária , Animais , Estudos Prospectivos , Células-Tronco , Suínos , Avulsão Dentária/terapia , Reimplante Dentário/métodos
19.
Front Cell Infect Microbiol ; 11: 671968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094999

RESUMO

The periodontal complex consists of the periodontal ligament (PDL), alveolar bone, and cementum, which work together to turn mechanical load into biological responses that are responsible for maintaining a homeostatic environment. However oral microbes, under conditions of dysbiosis, may challenge the actin dynamic properties of the PDL in the context of periodontal disease. To study this process, we examined host-microbial interactions in the context of the periodontium via molecular and functional cell assays and showed that human PDL cell interactions with Treponema denticola induce actin depolymerization through a novel actin reorganization signaling mechanism. This actin reorganization mechanism and loss of cell adhesion is a pathological response characterized by an initial upregulation of RASA4 mRNA expression resulting in an increase in matrix metalloproteinase-2 activity. This mechanism is specific to the T. denticola effector protein, dentilisin, thereby uncovering a novel effect for Treponema denticola-mediated RASA4 transcriptional activation and actin depolymerization in primary human PDL cells.


Assuntos
Metaloproteinase 2 da Matriz , Treponema denticola , Fibroblastos/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Ativação Transcricional , Regulação para Cima , Proteínas Ativadoras de ras GTPase
20.
J Dent Res ; 100(13): 1501-1509, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34009051

RESUMO

The WNT/ß-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a Wnt1-inducible transgenic mouse model targeting Col1a1-expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced Wnt1 expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk. Micro-computed tomography (CT) analyses of the mandibles revealed a 1.8-fold increased bone volume after 1 and 3 wk of Wnt1 expression and a 3-fold increased bone volume after 9 wk of Wnt1 expression compared to controls. In addition, the alveolar ridges were higher in Wnt1Tg mice as compared to controls. Nondecalcified histology demonstrated increased acellular cementum thickness and cellular cementum volume after 3 and 9 wk of Wnt1 expression. However, 9 wk of Wnt1 expression was also associated with periodontal breakdown and ectopic mineralization of the pulp. The composition of this ectopic matrix was comparable to those of cellular cementum as demonstrated by quantitative backscattered electron imaging and immunohistochemistry for noncollagenous proteins. Our analyses of 52-wk-old mice after 9 wk of Wnt1 expression revealed that Wnt1 expression affects mandibular bone and growing incisors but not molar teeth, indicating that Wnt1 influences only growing tissues. To further investigate the effect of Wnt1 on cementoblasts, we stably transfected the cementoblast cell line (OCCM-30) with a vector expressing Wnt1-HA and performed proliferation as well as differentiation experiments. These experiments demonstrated that Wnt1 promotes proliferation but not differentiation of cementoblasts. Taken together, our findings identify, for the first time, Wnt1 as a critical regulator of alveolar bone and cementum formation, as well as provide important insights for harnessing the WNT signal pathway in regenerative dentistry.


Assuntos
Cementogênese , Cemento Dentário , Animais , Camundongos , Osteogênese , Ligamento Periodontal , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA