Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Indoor Air ; 32(1): e12973, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34888956

RESUMO

Head orientations directly determine movement directions of exhaled pathogen-laden droplets, while there is a lack of research about the effect of the infected person's head orientations on respiratory disease transmission during close contact. This work experimentally investigated the effect of different head orientations of an infected person (IP) on the bioaerosol deposition on a healthy person (HP) during close contact. Also, the effectiveness of PV flow in reducing bioaerosol deposition on the HP under the IP's different head orientations was investigated. Bacteriophage T3 was employed to represent viruses inside the cough-generated aerosols. The bioaerosol depositions on different locations of the HP's upper body (chest, shoulder, and neck) and face (chin, mucous membranes, cheek, and forehead) were characterized by a cultivation method. Results showed that the IP's different head orientations resulted in significantly different deposition density on the HP. PV flow could reduce the bioaerosol deposition remarkably for most cases investigated. The effectiveness of PV flow in reducing deposition on the HP was significantly affected by the IP's head orientations. Findings suggest that changing head orientations can be a control measure to reduce the bioaerosol deposition. Personalized ventilation can be a potential method to reduce the bioaerosol deposition on the HP.


Assuntos
Poluição do Ar em Ambientes Fechados , Tosse , Cabeça , Aerossóis e Gotículas Respiratórios , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Humanos , Pulmão , Postura , Respiração , Ventilação
2.
J Clin Monit Comput ; 36(6): 1795-1803, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35165819

RESUMO

Electrical impedance segmentography offers a new radiation-free possibility of continuous bedside ventilation monitoring. The aim of this study was to evaluate the efficacy and reproducibility of this bedside tool by comparing synchronized intermittent mandatory ventilation (SIMV) with neurally adjusted ventilatory assist (NAVA) in critically-ill children. In this prospective randomized case-control crossover trial in a pediatric intensive care unit of a tertiary center, including eight mechanically-ventilated children, four sequences of two different ventilation modes were consecutively applied. All children were randomized into two groups; starting on NAVA or SIMV. During ventilation, electric impedance segmentography measurements were recorded. The relative difference of vertical impedance between both ventilatory modes was measured (median 0.52, IQR 0-0.87). These differences in left apical lung segments were present during the first (median 0.58, IQR 0-0.89, p = 0.04) and second crossover (median 0.50, IQR 0-0.88, p = 0.05) as well as across total impedance (0.52 IQR 0-0.87; p = 0.002). During NAVA children showed a shift of impedance towards caudal lung segments, compared to SIMV. Electrical impedance segmentography enables dynamic monitoring of transthoracic impedance. The immediate benefit of personalized ventilatory strategies can be seen when using this simple-to-apply bedside tool for measuring lung impedance.


Assuntos
Suporte Ventilatório Interativo , Criança , Humanos , Impedância Elétrica , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração Artificial
3.
Build Environ ; 214: 108901, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35197667

RESUMO

Airborne disease transmission in indoor spaces and resulting cross-contamination has been a topic of broad concern for years - especially recently with the outbreak of COVID-19. Global recommendations on this matter consist of increasing the outdoor air supply in the aim of diluting the indoor air. Nonetheless, a paradoxical relationship has risen between increasing amount of outdoor air and its impact on increased energy consumption - especially densely occupied spaces. The paradox is more critical in hot and humid climates, where large amounts of energy are required for the conditioning of the outdoor air. Therefore, many literature studies investigated new strategies for the mitigation of cross-contamination with little-to-no additional cost of energy. These strategies mainly consist of the dilution and/or the capture and removal of contaminants at the levels of macroenvironment room air and occupant-adjacent microenvironment. On the macroenvironment level, the dilution occurs by the supply of large amounts of outdoor air in a sustainable way using passive cooling systems, and the removal of contaminants happens via filtering. Similarly, the microenvironment of the occupant can be diluted using localized ventilation techniques, and contaminants can be captured and removed by direct exhaust near the source of contamination. Thus, this work answers ten questions that explore the most prevailing technologies from the above-mentioned fronts that are used to mitigate cross-contamination in densely occupied spaces located in hot and humid climates at minimal energy consumption. The paper establishes a basis for future work and insights for new research directives for macro and microenvironment approaches.

4.
Indoor Air ; 31(1): 99-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681676

RESUMO

This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Movimentos do Ar , Poluição do Ar , Expiração , Humanos , Respiração
5.
Energy Build ; 253: 111531, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34611376

RESUMO

In the context of COVID-19, new requirements are occurring in ventilation systems to mitigate airborne transmission risk in indoor environment. Personalized ventilation (PV) which directly delivers clean air to the occupant's breathing zone is considered as a promising solution. To explore the potentials of PV in preventing the spread of infectious aerosols between closely ranged occupants, experiments were conducted with two breathing thermal manikins with three different relative orientations. Nebulized aerosols were used to mimic exhaled droplets transmitted between the occupants. Four risk assessment models were applied to evaluate the exposure or infection risk affected by PV with different operation modes. Results show that PV was effective in reducing the user's infection risk compared with mixing ventilation alone. Relative orientations and operation modes of PV significantly affected its performance in airborne risk control. The infection risk of SARS-CoV-2 was reduced by 65% with PV of 9 L/s after an exposure duration of 2 h back-to-back as assessed by the dose-response model, indicating effective protection effect of PV against airborne transmission. While the side-by-side orientation was found to be the most critical condition for PV in airborne risk control as it would accelerate diffusion of infectious droplets in lateral diffusion to occupants by side. Optimal designs of PV for closely ranged occupants were hereby discussed. The four risk assessment models were compared and validated by experiments with PV, implying basically consistent rules of the predicted risk with PV among the four models. The relevance and applicability of these models were discussed to provide a basis for risk assessment with non-uniformly distributed pathogens indoor.

6.
Indoor Air ; 30(4): 776-789, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255221

RESUMO

The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modeled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Modelos Químicos , Ventilação , Ar Condicionado , Humanos
7.
Indoor Air ; 30(6): 1296-1307, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32478929

RESUMO

A novel vortex ring personalized ventilation system (VRPV) is proposed for efficiently supplying fresh air to room occupants. A vortex ring generator with a piston-cylinder is developed for an experimental study of the formation, transportation, and ventilation characteristics of the VRPV. The translational velocity, volume, and fresh air ratio of the vortex rings are studied using high-speed cameras and tracer gas experiments. According to the results, the categories of the vortex ring volume in the formation stage are studied. It is observed that the velocity of the piston determines the initial translational velocity of the vortex ring, and a fitting equation is proposed to predict the evolution of the translational velocity. The deviation range of the VRPV over different distances is studied, and it is shown to be affected by interference from both the generator and the environment. Finally, the total volumes, fresh air volumes, and fresh air ratios of the VRPV are studied at different distances. The results indicate that, as a personalized ventilation system, the fresh air ratio of the VRPV is up to 159.3% higher than that of a symmetrical round jet within a 0-4 m range. This shows the excellent application potential of the VRPV for providing high-efficiency personalized ventilation with lower fresh airflow rates.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Ar Condicionado
8.
Build Environ ; 180: 107008, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32834416

RESUMO

The role of personalized ventilation (PV) in protecting against airborne disease transmission between occupants was evaluated by considering two scenarios with different PV alignments. The possibility that PV may facilitate the transport of exhaled pathogens was explored by performing experiments with droplets and applying PV to a source or/and a target manikin. The risk of direct and indirect exposure to droplets in the inhalation zone of the target was estimated, with these exposure types defined according to their different origins. The infection risk of influenza A, a typical disease transmitted via air, was predicted based on a dose-response model. Results showed that the flow interactions between PV and the infectious exhaled flow would facilitate airborne transmission between occupants in two ways. First, application of PV to the source caused more than 90% of indirect exposure of the target. Second, entrainment of the PV jet directly from the infectious exhalation increased direct exposure of the target by more than 50%. Thus, these scenarios for different PV application modes indicated that continuous exposure to exhaled influenza A virus particles for 2 h would correspond with an infection probability ranging from 0.28 to 0.85. These results imply that PV may protect against infection only when it is maintained with a high ventilation efficiency at the inhalation zone, which can be realized by reduced entrainment of infectious flow and higher clean air volume. Improved PV design methods that could maximize the positive effects of PV on disease control in the human microenvironment are discussed.

9.
Indoor Air ; 29(5): 840-853, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31172603

RESUMO

Ventilation systems for commercial airliner cabins are important in reducing contaminant transport and maintaining thermal comfort. To evaluate the performance of a personalized displacement ventilation system, a conventional displacement ventilation system, and a mixing ventilation system, this study first used the Wells-Riley equation integrated with CFD to obtain the SARS quanta value based on a specific SARS outbreak on a flight. This investigation then compared the three ventilation systems in a seven-row section of a fully occupied, economy-class cabin in Boeing 737 and Boeing 767 airplanes. The SARS quanta generation rate obtained for the index patient could be used in future studies. For all the assumed source locations, the passengers' infection risk by air in the two planes was the highest with the mixing ventilation system, while the conventional displacement ventilation system produced the lowest risk. The personalized ventilation system performed the best in maintaining cabin thermal comfort and can also reduce the infection risk. This system is recommended for airplane cabins.


Assuntos
Aerossóis/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Aeronaves , Doenças Transmissíveis/transmissão , Ventilação/métodos , Aerossóis/análise , Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Humanos , Manequins , Medição de Risco/métodos
10.
Indoor Air ; 25(3): 297-306, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24923841

RESUMO

At the University of Debrecen, a new method and equipment for personalized ventilation has been developed. This equipment makes it possible to change the airflow direction during operation with a time frequency chosen by the user. The developed office desk with integrated air ducts and control system permits ventilation with 100% outdoor air, 100% recirculated air, or a mix of outdoor and recirculated air in a relative proportion set by the user. It was shown that better comfort can be assured in hot environments if the fresh airflow direction is variable. Analyzing the time step of airflow direction changing, it was found that women prefer smaller time steps and their votes related to thermal comfort sensation are higher than men's votes.


Assuntos
Comportamento do Consumidor , Ambiente Controlado , Ventilação/instrumentação , Adulto , Poluição do Ar em Ambientes Fechados , Exposição Ambiental/prevenção & controle , Desenho de Equipamento , Feminino , Humanos , Hungria , Masculino , Temperatura , Sensação Térmica , Ventilação/métodos , Local de Trabalho , Adulto Jovem
11.
Indoor Air ; 25(6): 683-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25615014

RESUMO

UNLABELLED: The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. PRACTICAL IMPLICATIONS: The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems' performance and can serve as an aid in making critical design decisions.


Assuntos
Poluição do Ar em Ambientes Fechados , Tosse , Ventilação , Aerossóis , Movimentos do Ar , Simulação por Computador , Humanos , Manequins
12.
Indoor Air ; 25(2): 176-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24810200

RESUMO

In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)-personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV-PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV-PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Controle de Infecções/métodos , Ventilação/métodos , Expiração , Humanos , Manequins
13.
Heart Lung ; 68: 305-315, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214040

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE: To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS: Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS: Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION: Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.

14.
J Clin Med ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337565

RESUMO

Chest trauma is one of the most serious and difficult injuries, with various complications that can lead to ventilation-perfusion (V/Q) mismatch and systemic hypoxia. We are presenting a case of a 53-year-old male with no chronic therapy who was admitted to the Intensive Care Unit due to severe respiratory failure after chest trauma. He developed a right-sided pneumothorax, and then a thoracic drain was placed. On admission, the patient was hemodynamically unstable and tachypneic. He was intubated and mechanically ventilated, febrile (38.9 °C) and unconscious. A lung CT showed massive non-ventilated areas, predominantly in the right lung, guiding repeated therapeutic and diagnostic bronchoalveolar lavages. He was ventilated with PEEP of 10 cmH2O with a FiO2 of 0.6-0.8. Empirical broad-spectrum antimicrobial therapy was immediately initiated. Both high FiO2 and moderate PEEP were maintained and adjusted according to the current blood gas values and oxygen saturation. He was weaned from mechanical ventilation, and non-invasive oxygenation was continued. After Stenotrophomonas maltophilia was identified and treated with sulfamethoxazole/trimethoprim, a regression of lung infiltrates was observed. In conclusion, both ventilatory and antibiotic therapy were needed to improve the oxygenation and outcome of the patient with S. maltophilia pneumonia and V/Q mismatch.

15.
Tomography ; 9(5): 1903-1932, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37888742

RESUMO

Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.


Assuntos
Estado Terminal , Tomografia , Humanos , Impedância Elétrica , Tomografia/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
16.
Energy Build ; 55: 118-126, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32288123

RESUMO

This paper discusses the issue of selecting the design solution that best accords with an articulated preference of multiple criteria with an acceptable performance band. The application of a newly developed multi-criteria decision-making tool called RR-PARETO2 is presented. An example of HVAC design is used to illustrate how solutions could be selected within a multi-criteria optimization framework. In this example, five criteria have been selected, namely, power consumption, thermal comfort, risk of airborne infection of influenza and tuberculosis and effective differential temperature (Δt eq) of body parts. The goal is to select the optimal air exchange rate that makes reasonable trade-offs among all the objectives. Two scenarios have been studied. In the first scenario, there is an influenza outbreak and the important objective is to prevent the spread of infection. In the second scenario, energy prices are high and the primary objective is to reduce energy. In both scenarios, RR-PARETO2 algorithm selects solutions that make reasonable trade-offs among conflicting objectives. The example illustrates how objectives such as reduction of airborne disease transmission and maximizing thermal comfort can be incorporated in the design of a practical, full-scale HVAC system.

17.
Travel Med Infect Dis ; 47: 102285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35314345

RESUMO

BACKGROUND: Expiratory droplets cause high infection risk to nearby passengers via airborne route. METHODS: We built a two-row four-seat setup to simulate a public transport cabin. A cough generator and a nebulizer were used to simulate the cough and talk processes respectively. Exposure and infection risk of nearby passengers was studied. The effect of gasper jet and backrest on risk mitigation was investigated. RESULTS: For the activity of coughing, the front passenger has much higher infection risk, which was around four times of that of other passengers, because of the concentration surge in the inhalation zone. For talking, the nearby passengers have similar infection risk because nearby passengers were all exposed to concentration surges with similar peak value. Gasper jet of the infected passenger and higher backrest can extinguish or reduce the concentration surge of front passengers and reduce the infection risk due to coughing and talking droplets. CONCLUSION: The passengers near the infected passenger have very high infection risk. The overhead gasper and a higher backrest can reduce the exposure and mitigate the risk of infection. It is believed that the control measures to protect nearby passengers are urgently needed in public transport cabins.


Assuntos
Tosse , Controle de Infecções , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36613062

RESUMO

This study focuses on the numerical analysis of a challenging issue involving the regulation of the human body's microenvironment through personalized ventilation. We intended to first concentrate on the main flow, namely, the personalized ventilation jet, before connecting the many interacting components that are impacting this microenvironment (human body plume, personalized ventilation jet, and the human body itself as a solid obstacle). Using the laminar model and the large eddy simulation (LES) model, the flow field of a cross-shaped jet with very low Reynolds numbers is examined numerically. The related results are compared to data from laser doppler velocimetry (LDV) and particle image velocimetry (PIV) for a reference jet design. The major goal of this study is to evaluate the advantages and disadvantages of the CFD approach for simulating the key features of the cross-shaped orifice jet flow. It was discovered that the laminar model overestimated the global jet volumetric flow rate and the flow expansion. LES looks more suitable for the numerical prediction of such dynamic integral quantities. In light of the computational constraints, it quite accurately mimics the mean flow behavior in the first ten equivalent diameters from the orifice, where the mesh grid was extremely finely tuned. From the perspective of the intended application, the streamwise velocity distributions, streamwise velocity decay, and volumetric flow rate anticipated by the LES model are rather well reproduced.


Assuntos
Corpo Humano , Ventilação , Humanos , Reologia/métodos , Fluxometria por Laser-Doppler/métodos , Simulação por Computador
19.
Heliyon ; 8(3): e09001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224237

RESUMO

The globally occurring recurrent waves of the COVID-19 pandemic, primarily caused by the transmission of aerosolized droplets from an infected person to a healthy person in the indoor environment, has led to the urgency of designing new modes of indoor ventilation. To prevent cross-contaminations due to airborne viruses, bacteria, and other pollutants in indoor environments, heating ventilation and air-conditioning (HVAC) systems need to be redesigned with anti-pandemic components. The three vital anti-pandemic components for the post-COVID-19 HVAC systems, as identified by the authors, are: a biological contaminant inactivation unit, a volatile organic compound decomposition unit, and an advanced air filtration unit. The purpose of the current article is to provide an overview of the latest research outcomes toward designing these anti-pandemic components and pointing out the future promises and challenges. In addition, the role of personalized ventilation in minimizing the risk of indoor cross-contamination by employing various air terminal devices is discussed. The authors believe that this article will encourage HVAC designers to develop effective anti-pandemic components to minimize the indoor airborne transmission.

20.
Crit Care Explor ; 1(7): e0020, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32166264

RESUMO

OBJECTIVES: To provide proof-of-concept for a protocol applying a strategy of personalized mechanical ventilation in children with acute respiratory distress syndrome. Positive end-expiratory pressure and inspiratory pressure settings were optimized using real-time electrical impedance tomography aiming to maximize lung recruitment while minimizing lung overdistension. DESIGN: Prospective interventional trial. SETTING: Two PICUs. PATIENTS: Eight children with early acute respiratory distress syndrome (< 72 hr). INTERVENTIONS: On 3 consecutive days, electrical impedance tomography-guided positive end-expiratory pressure titration was performed by using regional compliance analysis. The Acute Respiratory Distress Network high/low positive end-expiratory pressure tables were used as patient's safety guardrails. Driving pressure was maintained constant. Algorithm includes the following: 1) recruitment of atelectasis: increasing positive end-expiratory pressure in steps of 4 mbar; 2) reduction of overdistension: decreasing positive end-expiratory pressure in steps of 2 mbar until electrical impedance tomography shows collapse; and 3) maintaining current positive end-expiratory pressure and check regional compliance every hour. In case of derecruitment start at step 1. MEASUREMENTS AND MAIN RESULTS: Lung areas classified by electrical impedance tomography as collapsed or overdistended were changed on average by -9.1% (95% CI, -13.7 to -4.4; p < 0.001) during titration. Collapse was changed by -9.9% (95% CI, -15.3 to -4.5; p < 0.001), while overdistension did not increase significantly (0.8%; 95% CI, -2.9 to 4.5; p = 0.650). A mean increase of the positive end-expiratory pressure level (1.4 mbar; 95% CI, 0.6-2.2; p = 0.008) occurred after titration. Global respiratory system compliance and gas exchange improved (global respiratory system compliance: 1.3 mL/mbar, 95% CI [-0.3 to 3.0], p = 0.026; Pao2: 17.6 mm Hg, 95% CI [7.8-27.5], p = 0.0039; and Pao2/Fio2 ratio: 55.2 mm Hg, 95% CI [27.3-83.2], p < 0.001, all values are change in pre vs post). CONCLUSIONS: Electrical impedance tomography-guided positive end-expiratory pressure titration reduced regional lung collapse without significant increase of overdistension, while improving global compliance and gas exchange in children with acute respiratory distress syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA