RESUMO
To understand whether domestication had an impact on susceptibility and responsiveness to arbuscular mycorrhizal fungi (AMF) in tomato (Solanum lycopersicum), we investigated two tomato cultivars ("M82" and "Moneymaker") and a panel of wild relatives including S. neorickii, S. habrochaites and S. pennellii encompassing the whole Lycopersicon clade. Most genotypes revealed good AM colonisation levels when inoculated with the AMF Funneliformis mosseae. By contrast, both S. pennellii accessions analysed showed a very low colonisation, but with normal arbuscule morphology, and a negative response in terms of root and shoot biomass. This behaviour was independent of fungal identity and environmental conditions. Genomic and transcriptomic analyses revealed in S. pennellii the lack of genes identified within QTLs for AM colonisation, a limited transcriptional reprogramming upon mycorrhization and a differential regulation of strigolactones and AM-related genes compared to tomato. Donor plants experiments indicated that the AMF could represent a cost for S. pennellii: F. mosseae could extensively colonise the root only when it was part of a mycorrhizal network, but a higher mycorrhization led to a higher inhibition of plant growth. These results suggest that genetics and functional traits of S. pennellii are responsible for the limited extent of AMF colonisation.
Assuntos
Micorrizas , Raízes de Plantas , Locos de Características Quantitativas , Solanum lycopersicum , Micorrizas/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Locos de Características Quantitativas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Glomeromycota/fisiologia , Biomassa , FungosRESUMO
Results of previous research on chemigated imazamox for control of branched broomrape (Phelipanche ramosa) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL-1 sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL-1 sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL-1 sorbed; Woodland: 699.9 pg µL-1 sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.
Assuntos
Herbicidas , Imidazóis , Poluentes do Solo , Solo , Herbicidas/química , Adsorção , Poluentes do Solo/química , Solo/química , California , Imidazóis/química , Agricultura , Solanum lycopersicum/químicaRESUMO
Parasites can interact with their host plants through the induction and delivery of secreted effector proteins that facilitate plant colonization by decomposing plant cell walls and inhibiting plant immune response to weaken the defense ability of the host. Yet effectors mediating parasitic plant-host interactions are poorly understood. Phelipanche aegyptiaca is an obligate root parasite plant causing severe yield and economic losses in agricultural fields worldwide. Host resistance against P. aegyptiaca occurred during the attachment period of parasitism. Comparative transcriptomics was used to assess resistant and susceptible interactions simultaneously between P. aegyptiaca and two contrasting melon cultivars. In total, 2,740 secreted proteins from P. aegyptiaca were identified here. Combined with transcriptome profiling, 209 candidate secreted effector proteins (CSEPs) were predicted, with functional annotations such as cell wall degrading enzymes, protease inhibitors, transferases, kinases, and elicitor proteins. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 20 putatively effector genes among the CSEPs. Cluster 15140.0 can suppress BAX-triggered programmed cell death in N. benthamiana. These findings showed that the prediction of P. aegyptiaca effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, providing insights into understanding the essential molecular nature of effectors and laying the foundation of revealing the parasite mechanism of P. aegyptiaca, which is helpful in understanding parasite-host plant interaction.
RESUMO
Coleus (Plectranthus scutellarioides [L.] R.Br.[syn.: Solenostemon scutellarioides]) is a perennial plant in the Lamiaceae family. It produces variegated leaves of various colors. It is commonly cultivated as an ornamental plant or grown in commercial greenhouses (Garibaldi et al. 2019). Phelipanche aegyptiaca Pers. is a dicotyledonous holoparasitic flowering plant that parasitizes more than 30 food crops (e.g., tomato, sunflower, and chickpea), ornamental crops, and others in different parts of the world, causing heavy economic losses (Nosratti et al. 2020). In 2016 and 2017, broomrape was observed parasitizing coleus in the greenhouse (86° 3' 36" E, 44° 18' 36" N, 500 m elevation) in Shihezi, Xinjiang, China (Supplementary Figure 1A-D). A single coleus plant could be parasitized by average 6-10 broomrape plants, and 20% of coleus plants were infested. The infection was confirmed by verifying the attachment of the broomrape to the coleus root. The inflorescences of the broomrape were normal and healthy and produced germinable seeds (germination rate: 80-90%). The morphological characteristics of the coleus are shown in Supplementary Figures 6 and 7. The main botanical features of the broomrape are as follows: (i) stem 20.65±7.07 cm tall, erect, branched, frail, rather hairy, bulbous at the base with secondary roots; (ii) inflorescence usually many-flowered, lax and cylindrical; (iii) bracts 6.87±0.93 mm long, ovate to lanceolate; (iv) calyx 1.09±0.09 cm long, shortly campanulate; (v) corolla 3.38±0.19 cm long, erect to suberect, white at the base, blue-purple in the upper part, sparsely glandular-villous; (vi) stamens 4, filaments inserted 5-6 mm from the base of the corolla, 1.26±0.11 cm long, anthers with villous; (vii) pistil 2.9±0.15 cm long, ovary glabrous, style with short glandular hairs, stigma bilobed, white (Supplementary Figure 2) (Teimoury et al. 2012; Piwowarczyk et al. 2019). For molecular identification, total genomic DNA was extracted from the flowers of the broomrape (found parasitizing coleus plants), and the ribosomal protein S2 (rps2) and ribosomal DNA internal transcribed spacer (ITS) region were amplified by PCR using the primer pairs rps2F/rps2R, ITS1/ITS4 (Table 1) (Park et al. 2007; Anderson et al. 2004). Two sequences with 580 bp (ITS) and 443 bp (rps2) were obtained (GenBank accession No. MW811482 and MW883573). BLAST analysis showed that the ITS sequence was most similar (identity 100%) to P. aegyptiaca (KC811171) and the rps2 sequence (identity 99%) also matched that of P. aegyptiaca (KC814957). Phylogenetic analysis of the ITS regions and rps2 genes showed that broomrape was fallen into P. aegyptiaca groups (Supplementary Figure 3). Morphological and molecular findings strongly support the conclusion that the broomrape on coleus was P. aegyptiaca. In order to verify that coleus was a host of P. aegyptiaca, coleus seedlings were collected and moved to 1.5-L pots containing a mixture of compost-vermiculite-sand (1:1:1 v:v:v) and seeds of P. aegyptiaca harvested from the host coleus (50 mg of P. aegyptiaca seeds per 1 kg of the substrate). Another three coleus seedlings were transplanted into pots of the same size containing the same mixture as above without P. aegyptiaca seeds. These served as controls. After 90 days of inoculation, the leaves of the infected hosts were lighter in color than those of uninfected hosts (Supplementary Figures 4A, 6). The roots of coleus and P. aegyptiaca were carefully washed with water, and an average of 3-4 emerged broomrape shoots and 50-60 underground attachments were observed on coleus roots (Supplementary Figure 4B). P. aegyptiaca can develop normally in the root of the coleus plant, from germination through attachment to host roots and development of tubercles (Supplementary Figure 5 A-E). Longitudinal and transverse sections of the parasite and host roots at the tubercle stage revealed that the endophytic tissues of P. aegyptiaca had reached and connected to the host vascular bundle (Supplementary Figure 5F-I), confirming the normal biological development and function of P. aegyptiaca haustoria. To the best of our knowledge, this is the first report of P. aegyptiaca parasitizing coleus in Xinjiang, China. Coleus is a very widely cultivated horticultural ornamental plant, and it grows in the same environments favored by P. aegyptiaca; so, the plant can aid the transmission of P. aegyptiaca to previously clear regions. It is necessary to improve the management of coleus in places where P. aegyptiaca is prevalent so as to reduce its spread. References: Garibaldi, A., et al. 2019. Plant Dis. 104:590. https://doi.org/10.1094/PDIS-07-19-1399-PDN Crossref, ISI, Google Scholar Nosratti, I., et al. 2020. Weed Sci. 68:555-564. https://doi.org/10.1017/wsc.2020.61 Crossref, ISI, Google Scholar Teimoury, M., et al. 2012. Plant Dis. 96:1232. https://doi.org/10.1094/PDIS-01-12-0068-PDN Crossref, ISI, Google Scholar Piwowarczyk, R., et al. 2019. Phytotaxa. 386:001-106. https://doi.org/10.11646/phytotaxa.386.1.1 Crossref, ISI, Google Scholar Park, J. M., et al. 2007. Mol. Phylogenet. Evol. 43: 974-985. https://doi.org/10.1016/j.ympev.2006.10.011 Crossref, ISI, Google Scholar Anderson, I. C., et al. 2004. Environ. Microbiol. 6: 769-779. https://doi.org/10.1111/j.1462-2920.2004.00675.x Crossref, ISI, Google Scholar.
RESUMO
The study of allelopathic activity of plants and the isolation and characterization of the responsible allelochemicals can lead to the development of environment friendly alternative approaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use host-induced germination and the formation of a haustorium as strategies to infect host plants. The control of broomrape infection in most affected crops is limited or non-existing. In the current study, we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the identification of two germination-inducing molecules and two growth-inhibitory compounds. The germination-inducing metabolites had species-specific activity being hispidulin active on seeds of O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of all parasitic weed species studied. Some structure-activity relationships were found as result of the study herein presented.
Assuntos
Conyza , Orobanche , Humanos , Plantas Daninhas , Feromônios/farmacologia , Germinação , Sementes , Lactonas/farmacologiaRESUMO
MAIN CONCLUSION: New transgenic and biotechnological approaches may serve as a key component in achieving crop resistance to root parasitic weeds. Root parasitic weeds inflict severe damage to numerous crops, reducing yield quantity and quality. A lack of new sources of resistance limits our ability to manage newly developing, more virulent races. Having no effective means to control the parasites in most crops, innovative biotechnological solutions are needed. Several novel biotechnological strategies using regulatory RNA molecules, the CRISPR/Cas9 system, and T-DNA insertions have been acknowledged for engineering resistance against parasitic weeds. Significant breakthroughs have been made over the years in deciphering the plant genome and its functions, including the genomes of parasitic weeds. However, the basis of biotechnological strategies to generate host resistance to root parasitic weeds needs to be further developed. Gene-silencing and editing tools should be used to target key processes of host-parasite interactions, such as strigolactone biosynthesis and signaling, haustorium development, and degradation and penetration of the host cell wall. In this review, we summarize and discuss the main areas of research leading to the discovery and functional analysis of genes involved in host-induced gene silencing that target key parasite genes, transgenic host modification, and host gene editing to generate sustainable resistance to root parasitic weeds.
Assuntos
Orobanche , Plantas Daninhas , Produtos Agrícolas/genética , Interações Hospedeiro-Parasita , Raízes de Plantas/genética , Plantas Daninhas/genéticaRESUMO
Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above- and below-ground developmental processes, and are an important survival strategy for plants in nutrient-deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL-like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA-7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA-7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Lactonas/química , Proteólise , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Corantes Fluorescentes , Germinação , Hipocótilo/genética , Hipocótilo/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/fisiologiaRESUMO
Strigolactones (SLs), a group of plant hormones, induce germination of root-parasitic plants and inhibit shoot branching in many plants. Shoot branching is an important trait that affects the number and quality of flowers and fruits. Root-parasitic plants, such as Phelipanche spp., infect tomato roots and cause economic damage in Europe and North Africa-hence why resistant tomato cultivars are needed. In this study, we found carotenoid cleavage dioxygenase 8-defective mutants of Micro-Tom tomato (slccd8) by the "targeting induced local lesions in genomes" (TILLING) method. The mutants showed excess branching, which was suppressed by exogenously applied SL. Grafting shoot scions of the slccd8 mutants onto wild-type (WT) rootstocks restored normal branching in the scions. The levels of endogenous orobanchol and solanacol in WT were enough detectable, whereas that in the slccd8 mutants were below the detection limit of quantification analysis. Accordingly, root exudates of the slccd8 mutants hardly stimulated seed germination of root parasitic plants. In addition, SL deficiency did not critically affect the fruit traits of Micro-Tom. Using a rhizotron system, we also found that Phelipanche aegyptiaca infection was lower in the slccd8 mutants than in wild-type Micro-Tom because of the low germination. We propose that the slccd8 mutants might be useful as new tomato lines resistant to P. aegyptiaca.
Assuntos
Dioxigenases/genética , Resistência à Doença , Mutação , Orobanche/fisiologia , Solanum lycopersicum/parasitologia , Germinação , Lactonas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/parasitologiaRESUMO
The heterotrophic lifestyle of parasitic plants relies on the development of the haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely unknown in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying haustorium-inducing activity on P. ramosa germinating seeds, which increases the parasite aggressiveness. A de novo assembled transcriptome and microarray approach with P. ramosa during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI-55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin-responsive genes during early haustorium development in germinated seeds, and bio-guided UPLC-ESI(+)-/MS/MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa.
Assuntos
Brassica napus/parasitologia , Citocininas/metabolismo , Orobanche/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Orobanche/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologiaRESUMO
Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment.
Assuntos
Germinação/genética , Orobanche/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Orobanche/genética , Sementes/genéticaRESUMO
Seed dormancy release of the obligate root parasitic plant, Phelipanche ramosa, requires a minimum 4-day conditioning period followed by stimulation by host-derived germination stimulants, such as strigolactones. Germination is then mediated by germination stimulant-dependent activation of PrCYP707A1, an abscisic acid catabolic gene. The molecular mechanisms occurring during the conditioning period that silence PrCYP707A1 expression and regulate germination stimulant response are almost unknown. Here, global DNA methylation quantification associated with pharmacological approaches and cytosine methylation analysis of the PrCYP707A1 promoter were used to investigate the modulation and possible role of DNA methylation during the conditioning period and in the PrCYP707A1 response to GR24, a synthetic strigolactone analogue. Active global DNA demethylation occurs during the conditioning period and is required for PrCYP707A1 activation by GR24 and for subsequent seed germination. Treatment with 5-azacytidine, a DNA-hypomethylating molecule, reduces the length of the conditioning period. Conversely, hydroxyurea, a hypermethylating agent, inhibits PrCYP707A1 expression and seed germination. Methylated DNA immunoprecipitation followed by PCR experiments and bisulfite sequencing revealed that DNA demethylation particularly impacts a 78-nucleotide sequence in the PrCYP707A1 promoter. The results here demonstrate that the DNA methylation status during the conditioning period plays a crucial role independently of abscisic acid in the regulation of P. ramosa seed germination by controlling the strigolactone-dependent expression of PrCYP707A1.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lactonas/farmacologia , Orobanche/fisiologia , Sementes/fisiologia , Ácido Abscísico/metabolismo , Azacitidina/farmacologia , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Germinação/efeitos dos fármacos , Hidroxiureia/farmacologia , Dados de Sequência Molecular , Orobanche/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia , Sementes/efeitos dos fármacos , Análise de Sequência de DNARESUMO
Comparisons of closely related species are needed to understand the fine-scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non-parasitic Lindenbergia philippensis (as an out-group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species-specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART-related elements are much more widely distributed among angiosperms than previously known.
Assuntos
Genoma de Planta/genética , Orobanchaceae/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , DNA de Plantas/química , DNA de Plantas/genética , Diploide , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , TetraploidiaRESUMO
Germination of seeds of root parasites like broomrapes (Orobanchaceae) is tightly regulated by chemical products exuded from the roots of the host plant, known as germination stimulants (GSs). Changes in the levels of synthesis and emission of GS can allow the development of practical measures for control of the crops-harming parasitic species. However, the genes encoding enzymes responsible for GS biosynthesis are still unknown. We performed a large-scale screening of 62,000 Arabidopsis activation-tag mutants for alteration in susceptibility to Phelipanche ramosa and to identify lines with altered GS production among them. After five successive screenings we identified 36 lines with altered susceptibility to P. ramosa. Seven of them displayed altered levels of GS production. By using a combination of Southern blot and thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR), we pinpointed the location of activation-tag constructs in these lines. A combination of differential display and quantitative real-time PCR (qRT-PCR) allowed us to identify several affected genes. Two of them are directly involved in isoprenoid biosynthetic pathway in chloroplasts, and we believe that their activation led to increased levels of GS production. We believe that these genes are responsible for increased GS production in five of the Arabidopsis lines resistant to P. ramosa.
RESUMO
The phytohormones strigolactones (SLs) control root and shoot branching and are exuded from roots into the rhizosphere to stimulate interaction with mycorrhizal fungi. The exuded SLs serve as signaling molecules for the germination of parasitic plants. The broomrape Phelipanche aegyptiaca is a widespread noxious weed in various crop plants, including tomato (Solanum lycopersicum). We have isolated three mutants that impair SL functioning in the tomato variety M82: SHOOT BRANCHING 1 (sb1) and SHOOT BRANCHING 2 (sb2), which abolish SL biosynthesis, and SHOOT BRANCHING 3 (sb3), which impairs SL perception. The over-branching phenotype of the sb mutants resulted in a severe yield loss. The isogenic property of the mutations in a determinate growth variety enabled the quantitative evaluation of the contribution of SL to yield under field conditions. As expected, the mutants sb1 and sb2 were completely resistant to infection by P. aegyptiaca due to the lack of SL in the roots. In contrast, sb3 was more susceptible to P. aegyptiaca than the wild-type M82. The SL concentration in roots of the sb3 was two-fold higher than in the wild type due to the upregulation of the transcription of SL biosynthesis genes. This phenomenon suggests that the steady-state level of root SLs is regulated by a feedback mechanism that involves the SL signaling pathway. Surprisingly, grafting wild-type varieties on sb1 and sb2 rootstocks eliminated the branching phenotype and yield loss, indicating that SL synthesized in the shoots is sufficient to control shoot branching. Moreover, commercial tomato varieties grafted on sb1 were protected from P. aegyptiaca infection without significant yield loss, offering a practical solution to the broomrape crisis.
RESUMO
The efficient protoplast transient transformation system in plants is an important tool to study gene expression, metabolic pathways, and various mutagenic parameters, but it has not been established in Phelipanche aegyptiaca. As a root parasitic weed that endangers the growth of 29 species of plants in 12 families around the world, there is still no good control method for P. aegyptiaca. Even the parasitic mechanisms of P. aegyptiaca and the related genes regulating parasitism are not yet understood. In this study, by comparing the factors related to protoplast isolation and transfection, we developed the optimal protocol for protoplast isolation and transfection in Phelipanche aegyptiaca haustorium. The optimal protoplast yield and activity were 6.2 × 106 protoplasts/g fresh weight [FW] and 87.85%, respectively, by using 0.5 mol/L mannitol, enzyme concentrations of 2.5% cellulase R-10 and 0.8% Macerozyme R-10 at 24 °C for 4 h. At the same time, transfection efficiency of protoplasts was up to 78.49% when using 30 µg plasmid, 40% polyethylene glycol (PEG) concentration, 24 °C incubation temperature, and 20 min transfection time. This is the first efficient protoplasts' isolation and transient transformation system of Phelipanche aegyptiaca haustorium, laying a foundation for future studies on the gene function and mechanisms of haustorium formation in parasitic plants.
RESUMO
The plant Centaurea cineraria L. subsp. cineraria has been investigated as a potential source of inhibitors of broomrape radicle growth. The latter are weeds that pose a threat to agriculture and for which there are few methods available for the control of infestations. Four sesquiterpene lactones have been isolated from C. cineraria L. subsp. cineraria aerial parts and identified as isocnicin, cnicin, salonitenolide, and 11ß,13-dihydrosalonitenolide using spectroscopic, spectrometric, and optical methods. Salonitenolide and 11ß,13-dihydrosalonitenolide have been isolated for the first time from this plant. Tested at 1.0-0.1 mM against the broomrape species Phelipanche ramosa, Orobanche minor, Orobanche crenata, and Orobanche cumana, isocnicin, cnicin, and salonitenolide demonstrated remarkable inhibitory activity (over 80% in most of the cases) at the highest concentrations. Structure-activity relationship conclusions indicated the significance of the α,ß-unsaturated lactone ring. In addition, the synthetic acetylated derivative of salonitenolide showed the strongest activity among all compounds tested, with inhibitions close to 100% at different concentrations, which has been related to a different lipophilicity and the absence of H-bond donor atoms in its structure. Neither the extracts nor the compounds exhibited the stimulating activity of broomrape germination (induction of suicidal germination). These findings highlight the potential of C. cineraria to produce bioactive compounds for managing parasitic weeds and prompt further studies on its sesquiterpene lactones as tools in developing natural product-based herbicides.
RESUMO
Melon (Cucumis melo L.) is an economically important crop in Xinjiang, China, but its production is constrained by the parasitic plant Phelipanche aegyptiaca that attaches to the roots of many crops and causes severe stunting and loss of yield. Rhizotron, pot, and field experiments were employed to evaluate the resistance of 27 melon cultivars to P. aegyptiaca. Then, the resistant and susceptible cultivars were inoculated with P. aegyptiaca from six populations to assess their resistance stability and broad spectrum. Further microscopic and histological analyses were used to clarify the resistance phenotypes and histological structure. The results showed that Huangpi 9818 and KR1326 were more resistant to P. aegyptiaca compared to other cultivars in the rhizotron, pot, and field experiments. In addition, compared to the susceptible cultivar K1076, Huangpi 9818 and KR1326 showed broad-spectrum resistance to six P. aegyptiaca populations. These two resistant cultivars had lower P. aegyptiaca biomass and fewer and smaller P. aegyptiaca attachments on their roots compared to susceptible cultivar K1076. KR1326 (resistant) and K1076 (susceptible) were selected to further study resistance phenotypes and mechanisms. Germination-inducing activity of root exudates and microscopic analysis showed that the resistance in KR1326 was not related to low induction of P. aegyptiaca germination. The tubercles of parasite on KR1326 were observed slightly brown at 14 days after inoculation (DAI), the necrosis and arrest of parasite development occurred at 23 DAI. Histological analysis of necrosis tubercles showed that the endophyte of parasite had reached host central cylinder, connected with host xylem, and accumulation of secretions and callose were detected in neighbouring cells. We concluded that KR1326 is an important melon cultivar for P. aegyptiaca resistance that could be used to expand the genetic basis of cultivated muskmelon for resistance to the parasite.
RESUMO
The stigma is the terminal part of the carpel which receives pollen during the pollination process. Although the role of the stigmas in pollination is the same for all angiosperms, stigmas structures are very diverse. This study aimed to evaluate intraspecific, interspecific and intergeneric stigmas variability and then find differences of the stigma morphology amongst 24 holoparasitic Orobanche and Phelipanche species and provide new insights into its potential taxonomic value. This paper was also focused on selecting the best diagnostic features that would be used for future stigma analysis in other species of Orobanchaceae. These analyses were conducted with fresh, dry and fixed material using stereomicroscopy from different locations from Central Europe. Twenty-one quantitative or qualitative morphological features were analysed. This study highlights the variation of stigma morphology and characters which are useful to improve the taxonomic understanding of problematic taxa. Thus, two main types of stigmas were established, based on tested features: 1-oval, rarely hemispherical in shape, most often one-coloured with lobes separated in Phelipanche stigmas; 2-spherical to hemispherical, rarely oval, multi-coloured with partially fused or separated lobes in Orobanche stigmas. The best diagnostic features of the stigmas for distinguishing the Orobanchaceae are the type and subtype of stigma, the length and area of the stigma, the width of single lobes, the width in the middle part of the stigma, the length of upper and lower separation in the middle part between lobes and the angle between lobes in the upper and lower part. The morphological features of the stigmas are important criteria for distinguishing genera, sections and subsections, as well as related species. In this study, we present the first stigma morphological studies for the most numerous genera from the tribe Orobancheae and this paper may determine features possible to use in solving certain taxonomic problems and evolutionary relationships of the species.
RESUMO
Phelipanche aegyptiaca (Orobanchaceae) is a parasitic weed that causes severe yield losses in field crops around the world. After establishing vascular connections to the host plant roots, P. aegyptiaca becomes a major sink that draws nutrients, minerals, and water from the host, resulting in extensive crop damage. One of the most effective ways to manage P. aegyptiaca infestations is through the use of herbicides. Our main objective was to optimize the dose and application protocol of herbicides that effectively control P. aegyptiaca but do not damage the cabbage crop. The interactions between the cabbage roots and the parasite were first examined in a hydroponic system to investigate the effect of herbicides on initial parasitism stages, e.g., germination, attachment, and tubercles production. Thereafter, the efficacy of glyphosate and ethametsulfuron-methyl in controlling P. aegyptiaca was examined in five cabbage fields naturally infested with P. aegyptiaca. The herbicides glyphosate and ethametsulfuron-methyl were applied on cabbage foliage and in the soil solution, both before and after the parasite had attached to the host roots. A hormesis effect was observed when glyphosate was applied at a dose of 36 g ae ha-1 in a non-infested P. aegyptiaca field. Three sequential herbicide applications (21, 35, and 49 days after planting) effectively controlled P. aegyptiaca without damaging the cabbages at a dose of 72 g ae ha-1 for glyphosate and at all the examined doses for ethametsulfuron-methyl. Parasite control with ethametsulfuron-methyl was also effective when overhead irrigation was applied after the herbicide application.
RESUMO
The root parasitic weed broomrapes, Phelipanche spp., cause severe damage to agriculture all over the world. They have a special host-dependent lifecycle and their seeds can germinate only when they receive chemical signals released from host roots. Our previous study demonstrated that 2-phenylethyl isothiocyanate is an active germination stimulant for P. ramosa in root exudates of oilseed rape. In the present study, 21 commercially available ITCs were examined for P. ramosa seed germination stimulation, and some important structural features of ITCs for exhibiting P. ramosa seed germination stimulation have been uncovered. Structural optimization of ITC for germination stimulation resulted in ITCs that are highly active to P. ramosa. Interestingly, these ITCs induced germination of P. aegyptiaca but not Orobanche minor or Striga hermonthica. P. aegyptiaca seeds collected from mature plants parasitizing different hosts responded to these ITCs with different levels of sensitivity. ITCs have the potential to be used as inducers of suicidal germination of Phelipanche seeds.