Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.250
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39057053

RESUMO

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

2.
Curr Issues Mol Biol ; 46(4): 3694-3712, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38666960

RESUMO

Establishing a multi-enzyme synergistic lignocellulosic biodegradation system using lytic polysaccharide monooxygenase (LPMO) and polyphenol oxidases is vital for efficiently utilizing plant biomass waste, ultimately benefiting the carbon cycle and promoting environmental protection. Single-residue mutations of LPMO can improve the efficiency of lignocellulosic biomass degradation. However, the activity of mutant-type LPMO in relation to lignin-diverted reducing agents has not been sufficiently explored. In this study, laccase and tyrosinase were initially investigated and their optimal conditions and impressive thermal stability were revealed, indicating their potential synergistic abilities with LPMO in lignocellulose biodegradation. When utilizing gallic acid as a reducing agent, the activities of LPMOs were increased by over 10%, which was particularly evident in mutant-type LPMOs after the addition of polyphenol oxidases. In particular, the combination of tyrosinase with either 4-hydroxy-3-methoxyphenylacetone or p-coumaric acid was shown to enhance the efficacy of LPMOs. Furthermore, the highest activity levels of wild-type LPMOs were observed with the addition of laccase and 3-methylcatechol. The similarities between wild and mutant LPMOs regarding their activities in lignin-diverted phenolic compounds and reducing agents are almost identical, suggesting that the single-residue mutation of LPMO does not have a detrimental effect on its performance. Above all, this study indicates that understanding the performance of both wild and mutant types of LPMOs in the presence of polyphenol oxidases and various reducing agents constitutes a key link in the industrialization of the multi-enzyme degradation of lignocellulose.

3.
BMC Plant Biol ; 24(1): 345, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684952

RESUMO

BACKGROUND: During the pandemic, the interest in colorful wild small fruits increased due to their positive effects on health. Also it has become very important to offer species with high nutritional value as fresh or processed products for human consumption due to increasing world population and decreasing arable land. In this context, we characterized the horticultural characteristics of 11 rosehip genotypes grown from seeds. RESULTS: Citric acid was determined as the main organic acid in all the genotypes investigated. The mean values of the organic acids obtained from all the genotypes were found to be as follows: citric acid (7177 mg L-1), malic acid (3669 mg L-1), tartaric acid (1834 mg L-1), oxalic acid (1258 mg L-1), carboxylic acid (631.9 mg L-1), shikimic acid (157.8 mg L-1), ascorbic acid (155 mg L-1), and acetic acid (20.9 mg L-1). Ellagic acid was the dominant phenolic compound (90.1 mg L-1 - 96.2 mg L-1) in all genotypes. The average values obtained from all genotypes for total phenolics, total flavonoids, and antioxidant activity were 37 261 mg GAE L-1, 526.2 mg quercetin L-1, and 93.6%, respectively. These characteristics had the lowest coefficients of variation, which indicated that all genotypes were similar regarding high biochemical with antioxidant effect. In addition, fruit width, fruit length, and fruit weight varied between 13.0 and 17.3 mm, 20.7 and 25.5 mm, and 1.4 and 2.7 g, respectively. CONCLUSIONS: The genotypes were categorized according to different purposes, such as suitability for wine production, making vinegar, etc. While the pomological characteristics were strongly positively correlated among themselves, they were generally found to be negatively correlated with the phytochemical characteristics. Categorizing genotypes according to different usage purposes can improve the agricultural and industrial application of rosehip and enhance their breeding efficacy.


Assuntos
Genótipo , Rosa , Rosa/genética , Antioxidantes/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenóis , Horticultura , Flavonoides
4.
BMC Plant Biol ; 24(1): 880, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342125

RESUMO

BACKGROUND: While water availability is important for quality at harvest, it also continues to influence the quality of pomegranates during storage. Reducing the amount of irrigation, in addition to water saving has different effects on bioactive compounds of pomegranate during storage time. This study was conducted to determine the influence of irrigation level on fruit quality changes during storage period of two commercial Iranian pomegranate cultivars ('Shishecap' and 'Malas-Yazdi'). Sustained deficit irrigation (SDI) was applied to plants that received 75% (moderate stress) or 50% (severe stress) of their normal water requirement. A control group received 100% of their water requirement. RESULTS: At harvest time and during storage period, fruit weight loss and some biochemical traits such as fruit total soluble solids (TSS), titratable acidity (TA), pH, total phenolic compounds (TPC), total anthocyanins content (TAC), antioxidant activity and vitamin C were measured in pomegranate fruits. Also, the quantity of the produced product was also measured at the time of harvesting. Results indicated that control fruits exhibited more weight loss than those produced under water deficit during the storage period in both years. According to results, fruit TSS, TAC, and antioxidant activity significantly increased during storage period but fruit TA and vitamin C significantly decreased throughout storage period. Also, reduction in irrigation level resulted in a decline in the yield. CONCLUSIONS: This study revealed a crucial link between irrigation level and the quality of pomegranate fruits, despite a reduction in the yield. This included affecting weight loss and the content of bioactive compounds, both at harvest and during storage.


Assuntos
Irrigação Agrícola , Armazenamento de Alimentos , Frutas , Valor Nutritivo , Punica granatum , Punica granatum/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/química , Irrigação Agrícola/métodos , Armazenamento de Alimentos/métodos , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Irã (Geográfico) , Fenóis/metabolismo , Fenóis/análise , Antocianinas/análise , Antocianinas/metabolismo , Água
5.
Planta ; 260(3): 66, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080142

RESUMO

MAIN CONCLUSION: Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.


Assuntos
Formigas , Herbivoria , Micorrizas , Folhas de Planta , Solanum tuberosum , Simbiose , Compostos Orgânicos Voláteis , Animais , Micorrizas/fisiologia , Solanum tuberosum/fisiologia , Solanum tuberosum/microbiologia , Formigas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Folhas de Planta/fisiologia , Insetos/fisiologia
6.
Plant Cell Environ ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351860

RESUMO

Increasing desertification constitutes a global environmental problem, mainly driven by climate change and inappropriate land-use that limits agriculture, forestry and human colonization. The selection of suitable plant species to mitigate desertification is particularly challenging, as it usually requires simultaneous counteraction against a whole set of unfavourable environmental conditions, including heat, drought, high tropospheric ozone and salinity. It therefore seems useful to identify the survival strategies of plants native in desert environments. Date palm constitutes a plant species native in desert environments and cultivated worldwide in arid regions that have been studied intensively for stress defence during the last decade. The present review summarizes the current state of biochemical stress defence mechanisms including avoidance, osmotic and metabolic adjustments and reactive oxygen species scavenging, addresses whole-plant regulations and trade-off between stress compensation/defence and growth of date palms. The review advances our knowledge about how this typical desert species copes with both individual and multiple environmental stresses at the cellular to the whole-plant level, and identifies areas of future research required to fully understand the strategies of this plant species to survive in the desert, thereby contributing to efforts for the mitigation of climate change and desertification.

7.
Metabolomics ; 20(2): 27, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407628

RESUMO

INTRODUCTION: The use of chemical fungicides to combat disease has made a substantial contribution to food quality and security. Nonetheless, their applications have been limited due to environmental and health concerns, unaffordability, and the fact that pathogens have acquired resistance to some of these fungicides. Alternative eco-friendly and safe control methods should be explored. The current study investigated the influence of citrus rind phenolic compounds against Phyllosticta citricarpa infection by metabolic profiling of two citrus cultivars with varying degrees of susceptibility to infection. METHODS: Chromatographic data obtained by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC) was subjected to multivariate data analysis to identify biomarkers associated with the tolerant cultivar. The identified biomarkers were tested in vitro against P. citricarpa. RESULTS: Seville oranges, a tolerant cultivar, displayed higher levels of phenolic content and lower total sugar content, that are both associated with lower susceptibility to citrus black spot infection. The generated Principal Component Analysis (PCA) and Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA) models gave an overview of the data set and identified components that may be responsible for the differences in susceptibility between the two cultivars. Candidate biomarkers associated with tolerance were identified as naringin, neoeriocitrin, bruteiridin, melitidin, and lucenin-2. CONCLUSION: Naringin, a major candidate biomarker was able to inhibit the growth of the pathogen at 10 000 ppm.


Assuntos
Ascomicetos , Citrus , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Metabolômica , Fenóis/farmacologia , Biomarcadores
8.
Chemphyschem ; : e202400505, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978281

RESUMO

In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100%, with a cyclohexane selectivity of 89.3%. This study presents a promising pathway for converting lignin-derived phenolic compounds.

9.
Arch Microbiol ; 206(3): 91, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316691

RESUMO

Inhibition of quorum sensing is considered to be an effective strategy of control and treatment of a wide range of acute and persistent infections. Pseudomonas aeruginosa is an opportunistic bacterium with a high adaptation potential that contributes to healthcare-associated infections. In the present study, the effects of the synthesized hybrid structures bearing sterically hindered phenolic and heterocyclic moieties in a single scaffold on the production of virulence factors by P. aeruginosa were determined. It has been shown that the obtained compounds significantly reduce both pyocyanin and alginate production and stimulate the biosynthesis of siderophores in vitro, which may be attributed to their iron-chelating properties. The results of docking-based inverse high-throughput virtual screening indicate that transcription regulator LasR and Cu-transporter OPRC could be potential molecular targets for these compounds. Investigation of the impact small molecules exert on the molecular mechanisms of the production of bacterial virulence factors may pave the way for the design and development of novel antibacterial agents.


Assuntos
Pseudomonas aeruginosa , Fatores de Virulência , Transativadores/farmacologia , Percepção de Quorum , Piocianina , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes
10.
Environ Sci Technol ; 58(19): 8194-8206, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683689

RESUMO

Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.


Assuntos
Aerossóis , Biomassa , Fenóis , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Fenóis/toxicidade , Humanos , Oxirredução , Poluentes Atmosféricos/toxicidade
11.
Environ Sci Technol ; 58(1): 805-815, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38156625

RESUMO

Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (•OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their •OH photogeneration capabilities. These compounds demonstrated a substantial capacity for •OH production, exhibiting quantum yields of 0.1-5.9 × 10-3 through direct photolysis under 305 nm and 0.2-9.5 × 10-3 through a triplet sensitizer (4-benzoylbenzoic acid)-inducing reaction under 365 nm LED irradiation. Moreover, the chlorinated compounds exhibited higher light absorption and •OH quantum yields compared to those of their unchlorinated counterparts. The •OH photogeneration capacity of these compounds exhibited a positive correlation with their triplet state one-electron oxidation potentials. Molecular-level compositional analysis revealed that aromatic structures rich in hydroxyl and carboxyl groups (e.g., O/C > 0.5 with H/C < 1.5) within DOM serve as crucial sources of •OH, and chlorination of these compounds significantly enhances their capacity to generate •OH upon irradiation. This study provides novel insights into the enhanced photogeneration of •OH from chlorinated DOM, which is helpful for understanding the fate of trace pollutants in chlorinated waters.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Radical Hidroxila/análise , Radical Hidroxila/química , Matéria Orgânica Dissolvida , Fotólise , Oxirredução , Ácidos Carboxílicos , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696240

RESUMO

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Assuntos
Substâncias Húmicas , Manganês , Oxirredução , Fenóis , Manganês/química , Fenóis/química , Ânions , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química
13.
Bioorg Chem ; 145: 107254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432152

RESUMO

Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Fluconazol/farmacologia , Candida , Candida albicans , Candida glabrata , Inflamação/tratamento farmacológico
14.
Bioorg Chem ; 147: 107397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691905

RESUMO

Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.


Assuntos
Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Fenóis , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Fenóis/química , Fenóis/farmacologia , Fenóis/isolamento & purificação , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Agaricales/enzimologia
15.
Can J Physiol Pharmacol ; 102(1): 26-32, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850568

RESUMO

Hedera helix L., a member of the Araliaceae family, is a commonly known decorative plant with recognized medicinal activities. In this study, the ethanolic extract from H. helix leaves was investigated for its total polyphenolic and flavonoid contents, as well as its antioxidant and antibacterial properties. The aim was to evaluate its potential for controlling certain infections by screening its antibacterial activity against selected pathogenic bacteria. The total phenolic and flavonoid contents of the extract were determined using colorimetric methods. The antioxidant activity was assessed through two assay methods: the 1, 1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and the reducing power ferric reducing/antioxidant power (FRAP). The antibacterial activity against different pathogenic bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa, was evaluated using the well diffusion method. The total phenolic and flavonoid contents of the H. helix extract were found to be 134.3 ± 4.9 mg gallic acid/g and 42.4 ± 3.6 mg catechin/g, respectively. The extract exhibited antioxidant activity, with a reducing power represented by an FRAP value of 9.5 ± 0.9 mmol Fe+2/g DW and a percentage inhibition of DPPH of 64.7 ± 3.8 at 80 µg/mL. The extract demonstrated antibacterial activity, inhibiting the growth of K. pneumoniae and S. aureus with zone of inhibition values of 18.5 and 23.2 mm, respectively, using 25 mg/well. However, E. coli and P. aeruginosa exhibited resistance to the extract. The findings of this study highlight the antibacterial and antioxidant properties of the ethanolic extract from H. helix leaves. The extract exhibited significant phenolic and flavonoid contents, as well as antioxidant activity. It also demonstrated antibacterial activity against selected pathogenic bacteria, suggesting its potential for controlling certain infections. Further research is warranted to identify the active compounds responsible for these activities and to explore their mechanisms of action.


Assuntos
Antioxidantes , Hedera , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Staphylococcus aureus , Escherichia coli , Flavonoides/farmacologia , Fenóis/farmacologia , Bactérias , Ferro , Antibacterianos/farmacologia
16.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981707

RESUMO

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Assuntos
Antioxidantes , Ascorbato Peroxidases , Secas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico , Água/metabolismo , Ácido Ascórbico/metabolismo , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
17.
Biofouling ; 40(7): 402-414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991845

RESUMO

Microbial fouling involves the physicochemical interactions between microorganisms and solid surfaces. An electromagnetic field (EMF) may change the diffusion rates of microbial cells and the electrical double layer around the cells and contacting surfaces. In the current study, polycardanol exhibiting antibiofouling activity was modified with ferromagnetic iron oxide (IO) to investigate the EMF effects on bacterial adhesion. When there was a flow of electrolyte that contained bacterial cells, flow-induced EMF was generated according to Faraday's principle. It was observed that the IO-ionic solution (IS)-modified surfaces, with an induced current of 44, 53, 66 nA, showed decreases in the adhesion of bacteria cells more than the unmodified (polycardanol) and IO-nanoparticles-modified ones. In addition to the EMF effects, the nano-scale uniform roughness of the modified surfaces appeared to play an important role in the reduction of cell adhesion. The results demonstrated that the IOIS-modified surface (3.2 × 10-6 mM IO) had the highest antibiofouling activity.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Campos Eletromagnéticos , Fenóis , Propriedades de Superfície , Incrustação Biológica/prevenção & controle , Aderência Bacteriana/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia , Compostos Férricos/química , Biofilmes/efeitos dos fármacos
18.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921556

RESUMO

Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Organismos Aquáticos , Terpenos/farmacologia , Terpenos/química , Humanos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida/métodos
19.
Mar Drugs ; 22(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667783

RESUMO

The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer's (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds' processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds' dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.


Assuntos
Antioxidantes , Inibidores da Colinesterase , Algas Comestíveis , Fenóis , Porphyra , Alga Marinha , Antioxidantes/química , Carotenoides/química , Inibidores da Colinesterase/química , Dessecação , Flavonoides/química , Temperatura Alta , Fenóis/química , Ficobiliproteínas , Porphyra/química , Alga Marinha/química
20.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667796

RESUMO

Palmaria palmata is a viable source of nutrients with bioactive properties. The present study determined the potential role of post-extraction ultrasonication on some compositional features and antioxidant properties of enzymatic/alkaline extracts of P. palmata (EAEP). No significant difference was detected in terms of protein content and recovery, as well as the amino acid composition of the extracts. The nitrogen-to-protein conversion factor of 5 was found to be too high for the seaweed and EAEP. The extracts sonicated by bath for 10 min and not sonicated showed the highest and lowest total phenolic contents (p < 0.05), respectively. The highest radical scavenging and lowest metal-chelating activities were observed for the non-sonicated sample, as evidenced by IC50 values. The extract sonicated by bath for 10 min showed the most favorable in vitro antioxidant properties since its radical scavenging was not significantly different from that of the not-sonicated sample (p > 0.05). In contrast, its metal-chelating activity was significantly higher (p < 0.05). To conclude, post-extraction ultrasonication by an ultrasonic bath for 10 min is recommended to increase phenolic content and improve the antioxidant properties of EAEP.


Assuntos
Antioxidantes , Quelantes , Fenóis , Extratos Vegetais , Rodófitas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Quelantes/química , Algas Comestíveis/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rodófitas/química , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA