Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
J Biol Chem ; 299(8): 104940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343702

RESUMO

Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.


Assuntos
Proteínas Fúngicas , Proteínas Hemolisinas , Modelos Moleculares , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestrutura , Proteínas de Membrana , Cristalização , Microscopia de Força Atômica , Multimerização Proteica , Estrutura Terciária de Proteína
2.
J Bacteriol ; 205(5): e0006723, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37070977

RESUMO

Gram-negative bacteria have a unique cell surface that can be modified to maintain bacterial fitness in diverse environments. A well-defined example is the modification of the lipid A component of lipopolysaccharide (LPS), which promotes resistance to polymyxin antibiotics and antimicrobial peptides. In many organisms, such modifications include the addition of the amine-containing constituents 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN). Addition of pEtN is catalyzed by EptA, which uses phosphatidylethanolamine (PE) as its substrate donor, resulting in production of diacylglycerol (DAG). DAG is then quickly recycled into glycerophospholipid (GPL) synthesis by the DAG kinase A (DgkA) to produce phosphatidic acid, the major GPL precursor. Previously, we hypothesized that loss of DgkA recycling would be detrimental to the cell when LPS is heavily modified. Instead, we found that DAG accumulation inhibits EptA activity, preventing further degradation of PE, the predominant GPL of the cell. However, DAG inhibition of pEtN addition results in complete loss of polymyxin resistance. Here, we selected for suppressors to find a mechanism of resistance independent of DAG recycling or pEtN modification. Disrupting the gene encoding the adenylate cyclase, cyaA, fully restored antibiotic resistance without restoring DAG recycling or pEtN modification. Supporting this, disruptions of genes that reduce CyaA-derived cAMP formation (e.g., ptsI) or disruption of the cAMP receptor protein, Crp, also restored resistance. We found that loss of the cAMP-CRP regulatory complex was necessary for suppression and that resistance arises from a substantial increase in l-Ara4N-modified LPS, bypassing the need for pEtN modification. IMPORTANCE Gram-negative bacteria can alter the structure of their LPS to promote resistance to cationic antimicrobial peptides, including polymyxin antibiotics. Polymyxins are considered last-resort antibiotics for treatment against multidrug-resistant Gram-negative organisms. Here, we explore how changes in general metabolism and carbon catabolite repression pathways can alter LPS structure and influence polymyxin resistance.


Assuntos
Lipopolissacarídeos , Polimixina B , Polimixina B/farmacologia , Lipopolissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Polimixinas/farmacologia , Lipídeo A/química , Farmacorresistência Bacteriana/genética
3.
J Cell Mol Med ; 27(9): 1290-1295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016912

RESUMO

The maintenance of diminished acid ceramidase (ASAH1) gene expression leading to the accumulation of antiproliferative intracellular ceramides in oral squamous cell carcinoma (OSCC) has emerged as a prospective oral cancer therapeutic regimen. Our published study demonstrated that the key periodontal pathogen Porphyromonas gingivalis downregulates the expression patterns of ASAH1 mRNA in normal epithelial cells in vitro. Therefore, P. gingivalis may also beneficially diminish the expression of ASAH1 in OSCC. Because a uniquely structured P. gingivalis-derived phosphoethanolamine dihydroceramide (PEDHC) inhibits the proliferation of normal human fibroblasts, this study aimed to test the effect of PEDHC on the survival of human oral squamous OECM-1 cells in vitro. We demonstrated that the P. gingivalis dihydroceramide-null (ΔPG1780) strain upregulates the expression of ASAH1 mRNA and promotes aggressive proliferation and migration of OECM-1 cells compared to the parent P. gingivalis-W83 strain. In addition, the intracellular concentration of ceramides was dramatically elevated in OECM-1 cells exposed to PEDHC in vitro. Furthermore, PEDHC inhibited expression patterns of ASAH1 mRNA as well as some genes associated with degradation of the basement membranes and extracellular matrix, for example, MMP-2, ADAM-17 and IL-6, in OECM-1 cells. Altogether, these data indicated that PEDHC produced by P. gingivalis inhibits acid ceramidase expression, promotes intracellular ceramide accumulation and suppresses the survival and migration of OSCC cells in vitro. Further studies are needed to determine molecular mechanisms of PEDHC-mediated inhibitory effect(s) on OSCC using in vivo models of oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Porphyromonas gingivalis , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Ceramidase Ácida/genética , Estudos Prospectivos , Células Epiteliais/metabolismo , Ceramidas , Carcinoma de Células Escamosas de Cabeça e Pescoço
4.
Microb Pathog ; 174: 105889, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435436

RESUMO

Lipid A plays an important role in the pathogenicity and antimicrobial resistance of Vibrio parahaemolyticus, but little is known about the structure and biosynthesis of lipid A in V. parahaemolyticus. In this study, lipid A species were either directly extracted or obtained by the acid hydrolysis of lipopolysaccharide from V. parahaemolyticus ATCC33846 cells and analyzed by thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. Several lipid A species in V. parahaemolyticus cells were characterized, and two of these species were not connected to polysaccharides. One free lipid A species has the similar structure as the hexa-acylated lipid A in Escherichia coli, and the other is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain. Three lipid A species were isolated by the acid hydrolysis of lipopolysaccharide: the 1st one has the similar structure as the hexa-acylated lipid A in E. coli, the 2nd one is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain and a secondary 2-OH C12:0 acyl chain, and the 3rd one is equal to the 2nd species with a phosphoethanolamine modification. These results are important for understanding the biosynthesis of lipid A in V. parahaemolyticus.


Assuntos
Lipopolissacarídeos , Vibrio parahaemolyticus , Lipídeo A/química , Escherichia coli , Espectrometria de Massas
5.
Biotechnol Appl Biochem ; 70(5): 1565-1581, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36824047

RESUMO

Kidney stone is a major global menace that demands research on nonsurgical treatment involving biological compounds for the benefit of the patients. Among the biological extracts, citric acid is traditionally used to dissolve kidney stones. The current research focuses on evaluating the in vitro anti-urolithiatic activity and in silico study of ethanolic extract of Citrus sinensis (ECS) peel against c: phosphoethanolamine cytidylyltransferase (PCYT). The diuretic activity was evaluated using in vitro model against the synthesized calcium oxalate crystals and cytotoxicity study in Madin-Darby canine kidney cell lines. The phytochemicals were identified using gas chromatography-mass spectroscopy. The interaction mechanism was studied using computational docking studies to confirm their involvement in the dissolution of calcium oxalate kidney stones. Further molecular properties, drug-likeness, ADME (absorption, distribution, metabolism, and excretion), and toxicity analysis were followed for the ligands using software tools. 5-Hydroxymethylfurfural, 2,4-di-tert-butylphenol, 2-methoxy-4-vinylphenol, 6-octen-1-ol, 3,7-dimethyl-, acetate (citronellyl acetate), 3',5'-dimethoxyacetophenone, and ethyl alpha-d-glucopyranoside showed good binding affinities against PCYT. Moreover, the docking studies showed the ligand 3',5'-dimethoxyacetophenone has the highest binding energy (-6.68 kcal/mol) for human CTP. The present investigation concludes that these compounds of C. sinensis peel extract compounds are responsible as novel inhibitors against human CTP and extend their use in the pharmaceutical drug development process.


Assuntos
Citrus sinensis , Cálculos Renais , Humanos , Animais , Cães , Citrus sinensis/química , Oxalato de Cálcio , Extratos Vegetais/farmacologia , Cálculos Renais/química , Cálculos Renais/tratamento farmacológico , Compostos Fitoquímicos , Simulação de Acoplamento Molecular
6.
Chem Pharm Bull (Tokyo) ; 71(1): 10-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596506

RESUMO

In this study, an HPLC analysis method using pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was developed for the determination of o-phosphoethanolamine (PEA), which is a potential biomarker for the diagnosis of major depressive disorder, in human plasma sample. After PEA was derivatized with AQC under mild conditions, the obtained derivative was subjected to purification with a titanium dioxide-modified monolithic silica spin column (MonoSpin® TiO). The eluate from the MonoSpin® TiO was directly injected into an amide-type hydrophilic interaction liquid chromatography (HILIC) column-equipped HPLC system, and the resulting derivative could be separated on the column under alkaline mobile phase conditions and subsequently detected fluorometrically at excitation and emission wavelengths of 250 and 395 nm, respectively. The limit of detection and limit of quantification for a 10 µL injection volume of PEA were 0.052 and 0.17 µM, respectively. The method was validated at 0.2, 1.0, and 5.0 nmol/mL levels in plasma sample, and the precision values were 2.0-6.6% as relative standard deviation and the correlation coefficient (r) of the calibration curve was 0.9995. Furthermore, applicability of this method was demonstrated by analyzing PEA levels in plasma samples from mental illness patients.


Assuntos
Transtorno Depressivo Maior , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Etanolaminas , Indicadores e Reagentes , Reprodutibilidade dos Testes
7.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139140

RESUMO

Previously developed whole-cell vaccines against Bordetella pertussis, the causative agent of whooping cough, appeared to be too reactogenic due to their endotoxin content. Reduction in endotoxicity can generally be achieved through structural modifications in the lipid A moiety of lipopolysaccharides (LPS). In this study, we found that dephosphorylation of lipid A in B. pertussis through the heterologous production of the phosphatase LpxE from Francisella novicida did, unexpectedly, not affect Toll-like receptor 4 (TLR4)-stimulating activity. We then focused on the inner core of LPS, whose synthesis has so far not been studied in B. pertussis. The kdtA and kdkA genes, responsible for the incorporation of a single 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue in the inner core and its phosphorylation, respectively, appeared to be essential. However, the Kdo-bound phosphate could be replaced by a second Kdo after the heterologous production of Escherichia coli kdtA. This structural change in the inner core affected outer-core and lipid A structures and also bacterial physiology, as reflected in cell filamentation and a switch in virulence phase. Furthermore, the eptB gene responsible for the non-stoichiometric substitution of Kdo-bound phosphate with phosphoethanolamine was identified and inactivated. Interestingly, the constructed inner-core modifications affected TLR4-stimulating activity. Whereas endotoxicity studies generally focus on the lipid A moiety, our data demonstrate that structural changes in the inner core can also affect TLR4-stimulating activity.


Assuntos
Bordetella pertussis , Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Divisão Celular , Endotoxinas/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Mutação , Fosfatos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Coqueluche
8.
Plant J ; 107(4): 1072-1083, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098589

RESUMO

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Monoéster Fosfórico Hidrolases/genética , Arabidopsis/genética , Etanolaminas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas
9.
Anal Biochem ; 659: 114952, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228715

RESUMO

O-Phosphoethanolamine (PEA) is an endogenous substance that is attracting interest as a biomarker for depression, and thus there is a need to develop a simple analytical method that specifically measures PEA. Therefore, this study aimed to develop a simple and specific enzyme-linked immunosorbent assay (ELISA) for PEA. Anti-PEA antibody was obtained by immunizing mice with an antigen conjugated with mercaptosuccinyl bovine serum albumin using m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester (MBS). In this assay, the PEA to be quantified is chemically modified by benzoyl chloride that is allowed to compete with a PEA-MBS-HRP conjugate for binding to a limited amount of an anti-PEA antibody, which was used to coat the wells of a microtiter plate. This ELISA shows a linear range of detection of 0.11-27 µM, and a limit of quantification of 0.144 µM. The anti-PEA antibody showed high affinity for benzoyl PEA. No detectable cross-reactivity was found with benzoyl 2-aminoethanol, O-phospho-l-tyrosine or benzoyl sphingosine-1-phosphate. The values of plasma PEA levels measured by this ELISA were comparable to those measured by HPLC, and a strong correlation was observed between the values determined by the two methods. The developed ELISA should provide a valuable new tool for the quantification of PEA in human plasma.


Assuntos
Antígenos , Etanolaminas , Humanos , Camundongos , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Soroalbumina Bovina/química
10.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35370362

RESUMO

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

11.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430195

RESUMO

The activity of phosphate groups of phosphoethanolamine and pyrimidine nucleotides (thymidine 5-monophosphate, cytidine 5-monophosphate and uridine 5'monophosphate) in the process of complexation metal ions in aqueous solution was studied. Using the potentiometric method with computer calculation of the data and spectroscopic methods such as UV-Vis, EPR, 13C and 31P NMR as well as FT-IR, the overall stability constants of the complexes as well as coordination modes were obtained. At lower pH, copper(II) ions are complexed only by phosphate groups, whereas the endocyclic nitrogen atom of nucleotides has been identified as a negative center interacting with the -NH3+ groups of phosphoethanolamine.


Assuntos
Cobre , Nucleotídeos de Pirimidina , Cobre/química , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Monofosfato de Citidina
12.
J Integr Plant Biol ; 64(9): 1803-1820, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35789105

RESUMO

Phosphocholine (PCho) is an intermediate metabolite of nonplastid plant membranes that is essential for salt tolerance. However, how PCho metabolism modulates response to salt stress remains unknown. Here, we characterize the role of phosphoethanolamine N-methyltransferase 1 (PMT1) in salt stress tolerance in Arabidopsis thaliana using a T-DNA insertional mutant, gene-editing alleles, and complemented lines. The pmt1 mutants showed a severe inhibition of root elongation when exposed to salt stress, but exogenous ChoCl or lecithin rescued this defect. pmt1 also displayed altered glycerolipid metabolism under salt stress, suggesting that glycerolipids contribute to salt tolerance. Moreover, pmt1 mutants exhibited altered reactive oxygen species (ROS) accumulation and distribution, reduced cell division activity, and disturbed auxin distribution in the primary root compared with wild-type seedlings. We show that PMT1 expression is induced by salt stress and relies on the abscisic acid (ABA) signaling pathway, as this induction was abolished in the aba2-1 and pyl112458 mutants. However, ABA aggravated the salt sensitivity of the pmt1 mutants by perturbing ROS distribution in the root tip. Taken together, we propose that PMT1 is an important phosphoethanolamine N-methyltransferase participating in root development of primary root elongation under salt stress conditions by balancing ROS production and distribution through ABA signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etanolaminas , Regulação da Expressão Gênica de Plantas , Hexaclorocicloexano/análogos & derivados , Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico
13.
J Biol Chem ; 295(18): 6225-6235, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152228

RESUMO

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.


Assuntos
Escherichia coli/enzimologia , Etanolaminofosfotransferase/metabolismo , Glucosiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Dissulfetos/química , Etanolaminofosfotransferase/química , Glucosiltransferases/química , Modelos Moleculares , Conformação Proteica
14.
Artigo em Inglês | MEDLINE | ID: mdl-33318020

RESUMO

We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis strain ST451, showing an MDR profile and the presence of genes codifying the new ß-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance gene mcr-9.1.


Assuntos
Colistina , Enterobacter , Antibacterianos/farmacologia , Brasil , Colistina/farmacologia , Enterobacter/genética , Humanos , Plasmídeos , beta-Lactamases/genética
15.
Exp Eye Res ; 202: 108329, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33198953

RESUMO

Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.


Assuntos
Olho/irrigação sanguínea , Terapia Genética/métodos , Neovascularização Patológica/terapia , RNA Interferente Pequeno/genética , Retinopatia Diabética/genética , Humanos , Interferência de RNA , Fator A de Crescimento do Endotélio Vascular/genética
16.
Biopolymers ; 112(1): e23395, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894594

RESUMO

Bacterial biofilms are communities of bacteria entangled in a self-produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid-polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum-of-the-parts 13 C solid-state nuclear magnetic resonance (NMR) analysis to define the curli-to-pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well-studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid-air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic-associated) and the strain itself.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Celulose/química , Matriz Extracelular/química , Biomassa , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Etanolaminas/química
17.
Nanotechnology ; 33(4)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34663770

RESUMO

Multiwalled carbon nanotubes (MWNTs) exist as aggregates of highly entangled tubes due to large aspect ratios and strong Van der Waals interactions among them in their native states. In order to render them suitable for any application, MWNTs need to be separated and dispersed uniformly in a solvent preferably as individual tubes. In the present work, it is demonstrated that a double tail lipid such as 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) is capable of dispersing MWNTs in ethanol. Ultra-stable suspensions were obtained by optimizing two key parameters: DPPE to MWNT weight ratio (ε) and MWNT concentration (c). Stability of the suspensions increased with the increasingεvalue up to an optimum point (ε= 1.8) and then decreased drastically beyond that. CNT dispersions withε= 1.8 were extremely stable (with a Zeta potential of 108.26 ± 2.15 mV) and could be retained in suspended form up to 3 months. Effect of MWNT concentration on disaggregation was very significant and stable suspensions could be formed for MWNT concentrations only below 0.14 mg ml-1. Above this concentration, no stable dispersions could be obtained even withε= 1.8. Compression isotherms of Langmuir monolayers of the DPPE functionalized MWNTs spread at the air water interface were highly repeatable, suggesting that the MWNTs in dispersion were present as separate tubes coated with phospholipids. SEM micrographs of the Langmuir-Blodgett (LB) films, deposited at high surface pressures on silicon wafers, show that MWNTs remain as single nanotubes with no signs of reaggregation. TEM micrographs of MWNT suspensions indicated random adsorption of DPPE on MWNTs. Our work makes it possible to explore potential applications of LB films of MWNTs (stabilized by DPPE) in the development of conducting thin films for sensor applications or as supports to immobilize catalysts for heterogenous reactions.

18.
J Invertebr Pathol ; 186: 107474, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971130

RESUMO

The aegerolysin proteins ostreolysin A6, pleurotolysin A2 and erylysin A are produced by mushrooms of the genus Pleurotus. These aegerolysins can interact specifically with sphingolipid-enriched membranes. In particular, they strongly bind insect cells and to artificial lipid membranes that contain physiologically relevant concentrations of the main invertebrate-specific sphingolipid, ceramide phosphoethanolamine. Moreover, the aegerolysins permeabilise these membranes when combined with their protein partner pleurotolysin B, which contains a membrane-attack-complex/perforin domain. These aegerolysin/ pleurotolysin B complexes show strong and selective toxicity towards western corn rootworm larvae and adults and Colorado potato beetle larvae. Their insecticidal activities arise through aegerolysin binding to ceramide phosphoethanolamine in the insect midgut. This mode of membrane binding is different from those described for similar aegerolysin-based complexes of bacterial origin (e.g., Cry34Ab1/Cry35Ab1), or other Bacillus thuringiensis proteinaceous crystal toxins, which associate with protein receptors. The ability of Pleurotus aegerolysins to specifically interact with sphingolipid-enriched domains in mammalian cells can be further exploited to visualize lipid rafts in living cells, and to treat certain types of tumours and metabolic disorders. Finally, these proteins can strongly enhance fruiting initiation of P. ostreatus even when applied externally. In this review, we summarise the current knowledge of the potential biotechnological and biomedical applications of the Pleurotus aegerolysins, either alone or when complexed with pleurotolysin B, with special emphasis on their bioinsecticidal effects.


Assuntos
Besouros/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Controle Biológico de Vetores , Pleurotus/química , Animais , Agentes de Controle Biológico , Besouros/crescimento & desenvolvimento , Proteínas de Drosophila , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Inseticidas/química , Fatores de Transcrição
19.
Proc Natl Acad Sci U S A ; 115(40): 10106-10111, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232265

RESUMO

Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Celulose/efeitos adversos , Células Epiteliais/metabolismo , Etanolaminas/efeitos adversos , Bexiga Urinária/metabolismo , Escherichia coli Uropatogênica/metabolismo , Urotélio/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Celulose/farmacologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Etanolaminas/farmacologia , Humanos , Bexiga Urinária/microbiologia , Bexiga Urinária/ultraestrutura , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/ultraestrutura , Urotélio/microbiologia , Urotélio/ultraestrutura
20.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312746

RESUMO

Bacterial biofilms are surface-associated communities of bacterial cells enmeshed in an extracellular matrix (ECM). The biofilm lifestyle results in physiological heterogeneity across the community, promotes persistence, and protects cells from external insults such as antibiotic treatment. Escherichia coli was recently discovered to produce a chemically modified form of cellulose, phosphoethanolamine (pEtN) cellulose, which contributes to the formation of its extracellular matrix and elaboration of its hallmark wrinkled macrocolony architectures. Both pEtN cellulose and unmodified cellulose bind dyes such as calcofluor white and Congo red (CR). Here, we present the use of CR fluorescence to distinguish between pEtN cellulose and unmodified cellulose producers. We demonstrate the utility of this tool in the evaluation of a uropathogenic E. coli clinical isolate that appeared to produce curli and a cellulosic component but did not exhibit macrocolony wrinkling. We determined that lack of macrocolony wrinkling was attributed to a single-nucleotide mutation and introduction of a stop codon in bcsG, abrogating production of BcsG, the pEtN transferase. Thus, this work underscores the important contribution of the pEtN cellulose modification to the E. coli agar-based macrocolony wrinkling phenotype and introduces a facile approach to distinguish between modified and unmodified cellulose.IMPORTANCEE. coli bacteria produce amyloid fibers, termed curli, and a cellulosic component to assemble biofilm communities. Cellulose is the most abundant biopolymer on Earth, and we recently discovered that the cellulosic component in E. coli biofilms was not standard cellulose, but a newly identified cellulosic polymer, phosphoethanolamine cellulose. Studies involving the biological and functional impact of this cellulose modification among E. coli and other organisms are just beginning. Convenient methods for distinguishing pEtN cellulose from unmodified cellulose in E. coli and for estimating production are needed to facilitate further research. Dissecting the balance of pEtN cellulose and curli production by E. coli commensal strains and clinical isolates will improve our understanding of the host microbiome and of factors contributing to bacterial pathogenesis.


Assuntos
Celulose/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Coloração e Rotulagem/métodos , Celulose/química , Vermelho Congo/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanolaminas/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA