Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659412

RESUMO

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Estudos de Associação Genética , Microglia , Fagocitose/genética , Fenótipo , Placa Amiloide , Fosfolipase C gama/metabolismo
2.
Mol Cell ; 84(20): 3997-4015.e7, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39366376

RESUMO

The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.


Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato , Fosfatidilinositol 4,5-Difosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Humanos , Cálcio/metabolismo , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sítios de Ligação , Células HEK293 , Membrana Celular/metabolismo
3.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
4.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079542

RESUMO

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Antígenos Transformantes de Poliomavirus/metabolismo , Poliomavírus das Células de Merkel/metabolismo , NF-kappa B/metabolismo , Quinases da Família src/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Tirosina/metabolismo
5.
J Biol Chem ; 300(3): 105763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367671

RESUMO

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.


Assuntos
Receptores ErbB , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ligantes , Mutação , Fosfolipases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Domínios Proteicos/genética , Células CHO , Animais , Cricetinae , Humanos , Glioblastoma/genética
6.
Immunity ; 44(1): 73-87, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26777396

RESUMO

Neutrophils are recruited from the blood to sites of sterile inflammation, where they are involved in wound healing but can also cause tissue damage. During sterile inflammation, necrotic cells release pro-inflammatory molecules including formylated peptides. However, the signaling pathway triggered by formylated peptides to integrin activation and leukocyte recruitment is unknown. By using spinning-disk confocal intravital microscopy, we examined the molecular mechanisms of leukocyte recruitment to sites of focal hepatic necrosis in vivo. We demonstrated that the Bruton's tyrosine kinase (Btk) was required for multiple Mac-1 activation events involved in neutrophil recruitment and functions during sterile inflammation triggered by fMLF. The Src family kinase Hck, Wiskott-Aldrich-syndrome protein, and phospholipase Cγ2 were also involved in this pathway required for fMLF-triggered Mac-1 activation and neutrophil recruitment. Thus, we have identified a neutrophil Btk signalosome that is involved in a signaling pathway triggered by formylated peptides leading to the selective activation of Mac-1 and neutrophil recruitment during sterile inflammation.


Assuntos
Integrinas/metabolismo , Infiltração de Neutrófilos/imunologia , Proteínas Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , Tirosina Quinase da Agamaglobulinemia , Animais , Citometria de Fluxo , Inflamação , Integrinas/imunologia , Hepatopatias/imunologia , Hepatopatias/metabolismo , Camundongos , Microscopia Confocal , N-Formilmetionina Leucil-Fenilalanina/imunologia , Necrose/imunologia , Proteínas Tirosina Quinases/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-39197752

RESUMO

BACKGROUND: Cherubism is most commonly caused by rare heterozygous gain-of-function (GOF) missense variants in SH3BP2, which appear to signal through phospholipase C gamma 2 (PLCG2) to cause excessive osteoclast activity leading to expansile lesions in facial bones in childhood. GOF variants in PLCG2 lead to autoinflammatory PLCG2-associated antibody deficiency and immune dysregulation (autoinflammatory PLAID, or PLAID-GOF), characterized by variably penetrant autoinflammatory, autoimmune, infectious, and atopic manifestations. Cherubism has not been reported in PLAID to date. OBJECTIVE: We determined whether GOF PLCG2 variants may be associated with cherubism. METHODS: Clinical, laboratory, and genomic data from 2 patients with cherubism and other clinical symptoms observed in patients with PLCG2 variants were reviewed. Primary B-cell receptor-induced calcium flux was assessed by flow cytometry. RESULTS: Two patients with lesions consistent with cherubism but no SH3BP2 variants were found to have rare PLCG2 variants previously shown to be GOF in vitro, leading to increased primary B-cell receptor-induced calcium flux in one patient's B cells. Variable humoral defects, autoinflammatory rash, and other clinical and laboratory findings consistent with PLAID were observed as well. CONCLUSION: GOF PLCG2 variants likely represent a novel genetic driver of cherubism and should be assessed in SH3BP2-negative cases. Expansile bony lesions expand the phenotypic landscape of autoinflammatory PLAID, and bone imaging should be considered in PLAID patients.

8.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769878

RESUMO

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Assuntos
Síndromes de Imunodeficiência , Fosfolipase C gama , Humanos , Doenças Autoimunes , Cálcio/metabolismo , Síndromes de Imunodeficiência/genética , Mutação , Fosfolipase C gama/genética
9.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586586

RESUMO

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Transferases (Outros Grupos de Fosfato Substituídos) , Animais , Humanos , Camundongos , Frutose/efeitos adversos , Glucosilceramidas/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias/genética , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolaminas/sangue , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Camundongos Knockout , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos
10.
J Biol Chem ; 299(8): 104983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390986

RESUMO

The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gßγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C ß3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.


Assuntos
Actinas , Ácidos Araquidônicos , Estruturas da Membrana Celular , Neoplasias , Receptores Eicosanoides , Humanos , Actinas/metabolismo , Neoplasias/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Estruturas da Membrana Celular/metabolismo , Nanotubos , Receptores Eicosanoides/antagonistas & inibidores , Receptores Eicosanoides/metabolismo , Linhagem Celular Tumoral , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Transdução de Sinais
11.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912799

RESUMO

Target of rapamycin (TOR) forms two distinct complexes, TORC1 and TORC2, to exert its essential functions in cellular growth and homeostasis. TORC1 signaling is regulated in response to nutrients such as amino acids and glucose; however, the mechanisms underlying the activation of TORC2 signaling are still poorly understood compared to those for TORC1 signaling. In the budding yeast Saccharomyces cerevisiae, TORC2 targets the protein kinases Ypk1 and Ypk2 (hereafter Ypk1/2), and Pkc1 for phosphorylation. Plasma membrane stress is known to activate TORC2-Ypk1/2 signaling. We have previously reported that methylglyoxal (MG), a metabolite derived from glycolysis, activates TORC2-Pkc1 signaling. In this study, we found that MG activates the TORC2-Ypk1/2 and TORC2-Pkc1 signaling, and that phosphatidylserine is involved in the activation of both signaling pathways. We also demonstrated that the Rho family GTPase Cdc42 contributes to the plasma membrane stress-induced activation of TORC2-Ypk1/2 signaling. Furthermore, we revealed that phosphatidylinositol-specific phospholipase C, Plc1, contributes to the activation of both TORC2-Ypk1/2 and TORC2-Pkc1 signaling.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
12.
J Pharmacol Exp Ther ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777606

RESUMO

Bi-directional signaling through platelet integrin αIIbß3 is essential in hemostasis and thrombosis. In quiescent platelets αIIbß3 is in a low-affinity ligand binding state. However, upon platelet activation by agonists through inside-out signaling, a rapid switch in the conformation of the integrin results in a high affinity ligand binding state capable of binding soluble fibrinogen. Ligand binding to the αIIbß3 induces a signaling termed outside-in signaling that regulate platelet spreading and clot retraction. These events are often interchangeably used to represent outside-in signaling pathway. Using pharmacological inhibitors of known signaling molecules that have been implicated to regulate outside-in signaling, we assessed human platelet spreading and clot retraction. We found that inhibition of PI3K, PLC, PKC, and FAK strongly attenuated both platelet spreading and clot retraction suggesting that they are essential for both clot retraction and platelet spreading. Whereas inhibition of Rac1, ROCK, p38, and MEK did not affect platelet spreading but significantly delayed clot retraction suggesting that these signaling molecules do not participate in platelet spreading. Interestingly, Src family kinases (SFKs) are required for platelet spreading and FAK activation but suppresses clot retraction since their inhibition causes faster clot retraction. Thus, it becomes evident that platelet spreading, and clot retraction are differently regulated through αIIbß3 outside-in signaling and should not be used interchangeably as readout for αIIbß3 outside-in signaling assessment. Significance Statement Current anti-platelet drugs have increased risk of bleeding and low efficacy. There is an increased effort to identify novel anti-platelet agents that have improved efficacy with reduced risk of bleeding. It is increasingly felt that inhibition of αIIbß3-induced outside-in signaling may inhibit thrombosis without compromising hemostasis. However, the signaling entities regulating outside-in signaling is poorly understood. Our work included in this manuscript delineates the distinct signaling pathways involved in outside-in signaling and identify potential novel targets for intervention of thrombosis.

13.
Plant Cell Environ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253961

RESUMO

Camelina sativa is regarded as a low-input oilseed crop for versatile food, biofuels and industrial applications with potential production on marginal lands, whereas phosphate (Pi) deficiency greatly reduces camelina seed production. To improve camelina resilience to low P conditions, here we overexpressed the Pi deficiency-induced non-specific phospholipase C4 (NPC4) to test its effect on camelina seed production under different levels of Pi availability. NPC4-overexpressing (OE) plants displayed increased seed yield and oil production, with a greater magnitude of increases under Pi-deficient than Pi-sufficient conditions. NPC4-OE camelina had a higher level of total P and free Pi in young leaves but a lower level in old leaves than in wild-type plants. More Pi was moved from old leaves to young leaves in NPC4-OE than in wild-type plants. NPC4-OE increased the expression of Pi transporter genes, and the increase was greater in old leaves and under Pi-deficient conditions. These data indicate that NPC4 improves camelina growth by promoting Pi remobilization from old to young tissues, revealing a mechanism by which NPC4 mediates plant response to Pi deficiency.

14.
Hum Reprod ; 39(6): 1256-1274, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38670547

RESUMO

STUDY QUESTION: Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER: Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY: While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION: A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION: The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS: We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S): J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Desenvolvimento Embrionário , Fosfoinositídeo Fosfolipase C , Espermatozoides , Feminino , Animais , Masculino , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Camundongos , Humanos , Gravidez , Desenvolvimento Embrionário/fisiologia , Infertilidade Masculina/genética , Oócitos , Adulto
15.
J Exp Bot ; 75(20): 6489-6499, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39169567

RESUMO

Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estresse do Retículo Endoplasmático , Tunicamicina , Fosfolipases Tipo C , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tunicamicina/farmacologia , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/genética , Fosforilcolina/metabolismo , Fosforilcolina/análogos & derivados , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo
16.
Cell Commun Signal ; 22(1): 526, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478550

RESUMO

BACKGROUND: Phospholipase C gamma 1 (PLCγ1) is an important mediator of the T cell receptor (TCR) and growth factor signaling. PLCγ1 is activated by Src family kinases (SFKs) and produces inositol 1,4,5-triphosphate (InsP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme with broad substrate specificity and non-catalytic activities that mediate various functional protein-protein interactions. Therefore, IPMK plays critical functions in key biological events such as cell growth. However, the contribution of IPMK to the activation of PLCγ1 in TCR signaling remains mostly unelucidated. The current study aimed to elucidate the functions of IPMK in TCR signaling and to uncover the mode of IPMK-mediated signaling action in PLCγ1 activation. METHODS: Concanavalin A (ConA)-induced acute hepatitis model was established in CD4+ T cell-specific IPMK knockout mice (IPMKΔCD4). Histological analysis was performed to assess hepatic injury. Primary cultures of naïve CD4+ T cells were used to uncover the role of mechanisms of IPMK in vitro. Western blot analysis, quantitative real-time PCR, and flow cytometry were performed to analyze the TCR-stimulation-induced PLCγ1 activation and the downstream signaling pathway in naïve CD4+ T cells. Yeast two-hybrid screening and co-immunoprecipitation were conducted to identify the IPMK-binding proteins and protein complexes. RESULTS: IPMKΔCD4 mice showed alleviated ConA-induced acute hepatitis. CD4+ helper T cells in these mice showed reduced PLCγ1 Y783 phosphorylation, which subsequently dampens calcium signaling and IL-2 production. IPMK was found to contribute to PLCγ1 activation via the direct binding of IPMK to Src-associated substrate during mitosis of 68 kDa (Sam68). Mechanistically, IPMK stabilizes the interaction between Sam68 and to PLCγ1, thereby promoting PLCγ1 phosphorylation. Interfering this IPMK-Sam68 binding interaction with IPMK dominant-negative peptides impaired PLCγ1 phosphorylation. CONCLUSIONS: Our results demonstrate that IPMK non-catalytically promotes PLCγ1 phosphorylation by stabilizing the PLCγ1-Sam68 complex. Targeting IPMK in CD4+ T cells may be a promising strategy for managing immune diseases caused by excessive stimulation of TCR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfolipase C gama , Fosfotransferases (Aceptor do Grupo Álcool) , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Fosfolipase C gama/metabolismo , Animais , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Camundongos Endogâmicos C57BL , Humanos , Ligação Proteica , Camundongos Knockout , Concanavalina A/farmacologia
17.
Reprod Biomed Online ; 49(5): 104327, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39241689

RESUMO

RESEARCH QUESTION: Is artificial oocyte activation (AOA) effective for patients with unexplained low or no fertilization following IVF/intracytoplasmic sperm injection (ICSI)? DESIGN: All IVF/ICSI cases resulting in total fertilization failure or fertilization rate ≤25% at Ninewells Assisted Conception Unit, Dundee between January 2014 and December 2021 (n = 231) were reviewed contemporaneously. After exclusion of obvious stimulation, egg, sperm and/or assisted reproductive technology laboratory factors, patients with at least one cycle of IVF/ICSI resulting in apparently unexplained fertilization abnormalities were offered research investigations, including sperm immunocytochemistry for phospholipase C zeta (PLCζ) protein expression. This retrospective case-control cohort study evaluated laboratory and clinical outcomes for 39 couples (15 attended for sperm studies research) that subsequently undertook ICSI-AOA with Ca2+ ionophore. RESULTS: Comparing preceding IVF/ICSI and subsequent ICSI-AOA for each patient, the number of eggs collected was similar; however, ICSI-AOA resulted in a significantly improved fertilization rate (57.2% versus 7.1%; P < 0.0001). The uplift for a subset of 10 patients identified with PLCζ deficiency was 66.3% versus 4.6% (P < 0.0001). Overall, ICSI-AOA resulted in a higher number of fresh embryo transfers (94.6% versus 33.3%; P < 0.0001), a significantly higher clinical pregnancy rate (CPR) and live birth rate (LBR; 18.9% versus 2.6%; P = 0.02), a significant increase in cycles with surplus embryos suitable for cryostorage (43.6% versus 0%; P < 0.0001), and increased cumulative CPR (41.0% versus 2.6%; P < 0.0001) and LBR (38.5% versus 2.6%; P < 0.0001). CONCLUSION: AOA is a powerful tool that can transform clinical outcomes for couples experiencing apparently unexplained fertilization abnormalities. PLCζ assays have the potential to be valuable diagnostic tools to determine patient selection for ICSI-AOA, and research efforts should continue to focus on their development.


Assuntos
Oócitos , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Feminino , Estudos Retrospectivos , Adulto , Gravidez , Masculino , Estudos de Casos e Controles , Fosfoinositídeo Fosfolipase C/metabolismo , Fertilização in vitro/métodos , Fertilização/fisiologia
18.
EMBO Rep ; 23(7): e54532, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35712788

RESUMO

Phosphoinositide lipids (PPIn) are enriched in stearic- and arachidonic acids (38:4) but how this enrichment is established and maintained during phospholipase C (PLC) activation is unknown. Here we show that the metabolic fate of newly synthesized phosphatidic acid (PA), the lipid precursor of phosphatidylinositol (PI), is influenced by the fatty acyl-CoA used with preferential routing of the arachidonoyl-enriched species toward PI synthesis. Furthermore, during agonist stimulation the unsaturated forms of PI(4,5P)2 are replenished significantly faster than the more saturated ones, suggesting a favored recycling of the unsaturated forms of the PLC-generated hydrolytic products. Cytidine diphosphate diacylglycerol synthase 2 (CDS2) but not CDS1 was found to contribute to increased PI resynthesis during PLC activation. Lastly, while the lipid transfer protein, Nir2 is found to contribute to rapid PPIn resynthesis during PLC activation, the faster re-synthesis of the 38:4 species does not depend on Nir2. Therefore, the fatty acid side-chain composition of the lipid precursors used for PI synthesis is an important determinant of their metabolic fates, which also contributes to the maintenance of the unique fatty acid profile of PPIn lipids.


Assuntos
Ácidos Graxos , Ácidos Fosfatídicos , Lipogênese , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
19.
Physiol Plant ; 176(4): e14429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039026

RESUMO

Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Capsicum/genética , Capsicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Pólen/fisiologia , Fertilidade/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-39300709

RESUMO

Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1ß, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA