Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.004
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 192, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256796

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) methylation, a common form of RNA modification, play an important role in the pathogenesis of various diseases and in the ontogeny of organisms. Nevertheless, the precise function of m6A methylation in photoaging remains unknown. OBJECTIVES: This study aims to investigate the biological role and underlying mechanism of m6A methylation in photoaging. METHODS: m6A dot blot, Real-time quantitative PCR (RT-qPCR), western blot and immunohistochemical (IHC) assays were employed to detect the m6A level and specific m6A methylase in ultraviolet ray (UVR)-induced photoaging tissue. The profile of m6A-tagged mRNA was identified by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis. Finally, we investigated the regulatory mechanism of KIAA1429 by MeRIP-qPCR, RNA knockdown and immunofluorescence assay. RESULTS: m6A levels were increased in photoaging and were closely associated with the upregulation of KIAA1429 expression. 1331 differentially m6A methylated genes were identified in the UVR group compared with the control group, of which 1192 (90%) were hypermethylated. Gene ontology analysis showed that genes with m6A hypermethylation and mRNA downregulation were mainly involved in extracellular matrix metabolism and collagen metabolism-related processes. Furthermore, KIAA1429 knockdown abolished the downregulation of TGF-bRII and upregulation of MMP1 in UVR-irradiated human dermal fibroblasts (HDFs). Mechanically, we identified MFAP4 as a target of KIAA1429-mediated m6A modification and KIAA1429 might suppress collagen synthesis through an m6A-MFAP4-mediated process. CONCLUSIONS: The increased expression of KIAA1429 hinders collagen synthesis during UVR-induced photoaging, suggesting that KIAA1429 represents a potential candidate for targeted therapy to mitigate UVR-driven photoaging.


Assuntos
Colágeno , Envelhecimento da Pele , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Colágeno/metabolismo , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Humanos , Raios Ultravioleta , Metilação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação
2.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044341

RESUMO

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Assuntos
Ácido Aminolevulínico , Dano ao DNA , Reparo do DNA , Fibroblastos , Fotoquimioterapia , Transdução de Sinais , Envelhecimento da Pele , Raios Ultravioleta , Ácido Aminolevulínico/farmacologia , Reparo do DNA/efeitos dos fármacos , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Fotoquimioterapia/métodos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Masculino , Fármacos Fotossensibilizantes/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
3.
Curr Issues Mol Biol ; 46(2): 990-1009, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392181

RESUMO

Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.

4.
Small ; 20(23): e2309369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175859

RESUMO

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Assuntos
Ferroptose , Rim , Poliestirenos , Transferrina , Raios Ultravioleta , Poliestirenos/química , Ferroptose/efeitos dos fármacos , Animais , Rim/patologia , Rim/efeitos dos fármacos , Humanos , Transferrina/metabolismo , Camundongos , Adsorção , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade
5.
Exp Dermatol ; 33(1): e14956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846942

RESUMO

Aging is a normal and complex biological process. Skin is located in the most superficial layer of the body, and its degree of aging directly reflects the aging level of the body. Endoplasmic reticulum stress refers to the aggregation of unfolded or misfolded proteins in the endoplasmic reticulum and the disruption of the calcium ion balance when cells are stimulated by external stimuli. Mild endoplasmic reticulum stress can cause a series of protective mechanisms, including the unfolded protein response, while sustained high intensity stimulation leads to endoplasmic reticulum stress and eventually apoptosis. Photoaging caused by ultraviolet radiation is an important stimulus in skin aging. Many studies have focused on oxidative stress, but increasing evidence shows that endoplasmic reticulum stress plays an important role in photoaging. This paper reviews the development and mechanism of endoplasmic reticulum stress (ERS) in skin photoaging, and provides research directions for targeting the ERS pathway to slow aging.


Assuntos
Envelhecimento da Pele , Dermatopatias , Humanos , Raios Ultravioleta , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Pele/metabolismo , Dermatopatias/metabolismo , Apoptose
6.
Exp Dermatol ; 33(1): e14998, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284186

RESUMO

In photoaged human skin, type I collagen fragmentation impairs dermal extracellular matrix (ECM) integrity, resulting in collapsed/contracted fibroblasts with reduced type I procollagen synthesis. Injections of cross-linked hyaluronic acid (CL-HA) reverse these deleterious changes. To investigate the time course and effects of biochemical changes induced by injected CL-HA, particularly whether fibroblast activation leads to accumulation/deposition of dermal collagen, we injected CL-HA into photoaged skin of human participants over 60 years-old and performed biochemical/microscopic analyses of skin samples. Beginning 1 week post-injection and lasting 6-9 months, fibroblasts exhibited activation, including increased immunostaining and gene expression of markers of type I collagen synthesis, such as heat shock protein 47 and components of the transforming growth factor-ß pathway. At 1 week post-injection, multiphoton microscopy revealed elongation/stretching of fibroblasts, indicating enhanced dermal mechanical support. At 4 weeks, second-harmonic generation microscopy revealed thick collagen bundles densely packed around pools of injected CL-HA. At 12 months, accumulation of thick collagen bundles was observed and injected CL-HA remained present in substantial amounts. Thus, by occupying space in the dermal ECM, injected CL-HA rapidly and durably enhances mechanical support, stimulating fibroblast elongation and activation, which results in thick, densely packed type I collagen bundles accumulating as early as 4 weeks post-injection and continuing for at least a year. These observations indicate that early and prolonged clinical improvement following CL-HA injection results from space-filling and collagen deposition. As type I collagen has an estimated half-life of 15 years, our data provide the foundations for optimizing the timing/frequency of repeat CL-HA injections.


Assuntos
Colágeno Tipo I , Ácido Hialurônico , Humanos , Pessoa de Meia-Idade , Colágeno Tipo I/metabolismo , Ácido Hialurônico/metabolismo , Colágeno/metabolismo , Pele/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo
7.
Cell Commun Signal ; 22(1): 32, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217034

RESUMO

Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.


Assuntos
Exossomos , Envelhecimento da Pele , Exossomos/metabolismo , Raios Ultravioleta , Pele/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo
8.
Biogerontology ; 25(4): 649-664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38592565

RESUMO

Skin photoaging is mostly caused by ultraviolet A (UVA), although active medications to effectively counteract UVA-induced photoaging have not yet been created. Resveratrol, a naturally occurring polyphenol found in the skin of grapes, has been shown to have various biological functions such as anti-inflammatory and antioxidant characteristics. However, the role of resveratrol in UVA-induced photoaging has not been clarified. We investigated the mechanism of action of resveratrol by UVA irradiation of human skin fibroblasts (HSF) and innovatively modified a mouse model of photoaging. The results demonstrated that resveratrol promoted AMP-activated protein kinase (AMPK) phosphorylation to activate autophagy, reduce reactive oxygen species (ROS) production, inhibit apoptosis, and restore normal cell cycle to alleviate UVA-induced photoaging. In addition, subcutaneous injection of resveratrol not only improved the symptoms of roughness, erythema, and increased wrinkles in the skin of UVA photodamaged mice, but also alleviated epidermal hyperkeratosis and hyperpigmentation, reduced inflammatory responses, and inhibited collagen fiber degradation. In conclusion, our studies proved that resveratrol can treat UVA-induced photoaging and elucidated the possible molecular mechanisms involved, providing a new therapeutic strategy for future anti-aging.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Fibroblastos , Resveratrol , Envelhecimento da Pele , Pele , Raios Ultravioleta , Resveratrol/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Estilbenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação
9.
Biogerontology ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312047

RESUMO

The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.

10.
Photochem Photobiol Sci ; 23(5): 853-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613600

RESUMO

Synthetic sunscreen offers protection against excessive exposure to ultraviolet (UV) radiation from the sun, and protects the skin from possible damage. However, they have low efficacy against the formation of reactive oxygen species (ROS), which are highly reactive molecules that can be generated in the skin when it is exposed to UV radiation, and are known to play a role in oxidative stress, which can contribute to skin aging and damage. Thus, there is an ongoing search for sunscreens that do not have these negative effects. One promising source for these is natural products. Therefore, the current patent review summarizes topical formulations made from natural compounds that have antioxidant properties and can be used as photoprotective or anti-aging agents, either using a single natural extract or a combination of extracts. The review reports basic patent information (applicant country, type of applicant, and year of filing) and gives details about the invention, including its chemical composition, and the in vitro and in vivo tests performed. These patents describe natural products that can be used to protect the skin and validate their efficacy, and safety, in addition to standardizing their formulations. The compositions described illustrate the consistent innovation in the use of natural products to protect against UV damage and photoaging disorders, a promising field which is receiving growing global recognition.


Assuntos
Produtos Biológicos , Protetores Solares , Raios Ultravioleta , Protetores Solares/farmacologia , Protetores Solares/química , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Raios Ultravioleta/efeitos adversos , Patentes como Assunto , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Photochem Photobiol Sci ; 23(5): 957-972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613601

RESUMO

Stem cell paracrine has shown potential application in skin wound repair and photoaging treatment. Our previous study demonstrated that miR-1246-overexpressing Exosomes (OE-EXs) isolated from adipose-derived stem cells (ADSCs) showed superior photo-protecting effects on UVB-induced photoaging than that of the vector, however, the underlying mechanism was unclear. The simultaneous bioinformatics analysis indicated that miR-1246 showed potential binding sites with GSK3ß which acted as a negative regulator for autophagy. This study was aimed to explore whether OE-EXs ameliorate skin photoaging by activating autophagy via targeting GSK3ß. The results demonstrated that OE-EXs significantly decreased GSK3ß expression, enhanced autophagy flux and autophagy-related proteins like LC3II, while suppressed p62 expression. Meanwhile, OE-EXs markedly reversed the levels of intracellular ROS, MMP-1, procollagen type I and DNA damage in human skin fibroblasts caused by UVB irradiation, but the ameliorating effects were significantly inhibited when 3-Methyladenine (3-MA) was introduced to block the autophagy pathway. Further, OE-EXs could reverse UVB-induced wrinkles, epidermal hyperplasia, and collagen fibers reduction in Kunming mice, nevertheless, the therapeutical effects of OE-EXs were attenuated when it was combinative treated with 3-MA. In conclusion, OE-EXs could cure UVB induced skin photoaging by activating autophagy via targeting GSK3ß.


Assuntos
Autofagia , Exossomos , Glicogênio Sintase Quinase 3 beta , MicroRNAs , Envelhecimento da Pele , Raios Ultravioleta , Animais , Humanos , Camundongos , Células Cultivadas , Exossomos/metabolismo , Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação
12.
Photochem Photobiol Sci ; 23(3): 463-478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326693

RESUMO

UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-ß and wingless-related integration site (Wnt)/ß-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), ß-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/ß-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating ß-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.


Assuntos
Metaloproteinase 1 da Matriz , Envelhecimento da Pele , Via de Sinalização Wnt , Humanos , beta Catenina/metabolismo , beta Catenina/farmacologia , Linhagem Celular , Colágeno/farmacologia , Queratinócitos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
13.
Environ Sci Technol ; 58(31): 13973-13985, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39046080

RESUMO

The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<1kDa) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<1kDa contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<1kDa was more actively involved in the increase of different reactive species yields by 50-290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.


Assuntos
Substâncias Húmicas , Microplásticos , Peso Molecular , Poluentes Químicos da Água/química , Raios Ultravioleta , Benzopiranos
14.
Environ Sci Technol ; 58(36): 16164-16174, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190796

RESUMO

Microplastics (MPs) in coastal wetlands have been of great concern, but information on the aging behavior of MPs in the sediment-water interface is still lacking. In this study, the contribution of a typical abiotic (photoaging) and biotic (biodegradation) process and the underlying aging pathway of MPs with different degradabilities (including polypropylene, polyethylene terephthalate, and polylactic acid) were studied. With a quantified relative importance of photoaging (>55%) vs biodegradation, the crucial contribution of photoaging on MP aging was highlighted. This was likely attributed to more generation of reactive oxygen species (ROS) under sunlight irradiation conditions, containing O2•- and H2O2. By raising higher the level of malondialdehyde (0.5-3.5 times as high as that in the dark condition), these photochemically formed ROS caused oxidative stress and inhibited the selective attachment of plastic-degrading microbes on the MP surface, thereby weakening the effect of biodegradation. On this basis, the aging characteristics and potential pathway of different MPs were revealed. The functional group of nondegradable polypropylene tends to be broken by ROS first, while biodegradation (Arthrobacter oryzae and Bacillus sp.) played a relatively dominant role in biodegradable polylactic acid. This study provides a new sight for the understanding on the aging behaviors of MPs in the sediment-water interface.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Microplásticos , Sedimentos Geológicos/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Água/química , Poliésteres/metabolismo
15.
Environ Sci Technol ; 58(10): 4500-4509, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38415582

RESUMO

Tire wear particles (TWPs) have caused increasing concerns due to their detrimental effects on the soil ecosystem. However, the role of weathering in altering the toxicity of TWP to soil organisms is poorly understood. In this study, the toxicity of original and photoaged TWP was compared using earthworms (Eisenia fetida) as soil model organisms. The obtained results indicated that photoaging of TWP resulted in an increase of environmentally persistent free radicals (EPFRs) from 3.69 × 1017 to 5.20 × 1017 spin/g. Meanwhile, photoaged TWP induced the changes of toxic endpoint in E. fetide, i.e., the increase of the weight loss and death ratio from 0.0425 to 0.0756 g/worm and 23.3 to 50% compared to original TWP under a 10% concentration, respectively. Analyses of transcriptomics, antioxidant enzyme activity, and histopathology demonstrated that the enhanced toxicity was mainly due to oxidative damage, which was induced by disruption in the antioxidant defense system. Free-radical quenching and correlation analysis further suggested that the excessive production of ex vivo reactive oxygen species, induced by EPFRs, led to the exhaustion of the antioxidant defense system. Overall, this work provides new insights into the potential hazard of the weathered TWP in a soil environment and has significant implications for the recycling and proper disposal of spent tire particles.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/farmacologia , Ecossistema , Poluentes do Solo/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Solo
16.
Environ Sci Technol ; 58(26): 11625-11636, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38848335

RESUMO

Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 µmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/química , Poliésteres/química , Poluentes Químicos da Água/química
17.
Environ Sci Technol ; 58(18): 8053-8064, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662987

RESUMO

The aggregation behavior of ubiquitous dissolved black carbon (DBC) largely affects the fate and transport of its own contaminants and the attached contaminants. However, the photoaging processes and resulting effects on its colloidal stability remain yet unknown. Herein, dissolved biochars (DBioCs) were extracted from common wheat straw biochar as a proxy for an anthropogenic DBC. The influences of UV radiation on their aggregation kinetics were systematically investigated under various water chemistries (pH, electrolytes, and protein). The environmental stability of the DBioCs before and after radiation was further verified in two natural water samples. Hamaker constants of pristine and photoaged DBioCs were derived according to Derjaguin-Landau-Verwey-Overbeek (DLVO) prediction, and its attenuation (3.19 ± 0.15 × 10-21 J to 1.55 ± 0.07 × 10-21 J after 7 days of radiation) was described with decay kinetic models. Pearson correlation analysis revealed that the surface properties and aggregation behaviors of DBioCs were significantly correlated with radiation time (p < 0.05), indicating its profound effects. Based on characterization and experimental results, we proposed a three-stage mechanism (contended by photodecarboxylation, photo-oxidation, and mineral exposure) that DBioCs might experience under UV radiation. These findings would provide an important reference for potential phototransformation processes and relevant behavioral changes that DBC may encounter.


Assuntos
Raios Ultravioleta , Água/química , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química
18.
J Am Acad Dermatol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216821

RESUMO

Aging is associated with significant changes to skin structure and function. As the United States population ages, dermatologists are increasingly presented with the clinical consequences of these changes. Understanding the biology of aging skin allows dermatologists to best guide patients towards proactive treatment of age-related skin disease. The first article of this 2-part continuing medical education series reviews the structural, molecular and functional changes associated with skin aging.

19.
J Am Acad Dermatol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39025264

RESUMO

BACKGROUND: UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS: This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS: Small sample size is this study's limitation. CONCLUSION: Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.

20.
J Am Acad Dermatol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772426

RESUMO

As our knowledge of the harmful effects of ultraviolet radiation continues to evolve, sunscreen remains an integral part of a comprehensive photoprotection strategy against multiple endpoints of ultraviolet-mediated damage. Part 1 of this review covers sunscreen active and additive ingredient properties, mechanisms of action and gaps in coverage. Following an overview of sunscreen's efficacy in protecting against sunburn, photocarcinogenesis, photoaging, pigmentary disorders, and idiopathic photodermatoses, we highlight considerations for product use and selection in children and individuals with skin of color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA