Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2303928120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494398

RESUMO

Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.


Assuntos
Nariz , Olfato , Humanos , Nariz Eletrônico , Aprendizado de Máquina , Gases
2.
Proc Natl Acad Sci U S A ; 120(38): e2306601120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695899

RESUMO

Cherenkov radiation occurs only when a charged particle moves with a velocity exceeding the phase velocity of light in that matter. This radiation mechanism creates directional light emission at a wide range of frequencies and could facilitate the development of on-chip light sources except for the hard-to-satisfy requirement for high-energy particles. Creating Cherenkov radiation from low-energy electrons that has no momentum mismatch with light in free space is still a long-standing challenge. Here, we report a mechanism to overcome this challenge by exploiting a combined effect of interfacial Cherenkov radiation and umklapp scattering, namely the constructive interference of light emission from sequential particle-interface interactions with specially designed (umklapp) momentum-shifts. We find that this combined effect is able to create the interfacial Cherenkov radiation from ultralow-energy electrons, with kinetic energies down to the electron-volt scale. Due to the umklapp scattering for the excited high-momentum Bloch modes, the resulting interfacial Cherenkov radiation is uniquely featured with spatially separated apexes for its wave cone and group cone.

3.
Proc Natl Acad Sci U S A ; 120(39): e2311583120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722057

RESUMO

Ancient glass objects typically show distinctive effects of deterioration as a result of environmentally induced physicochemical transformations of their surface over time. Iridescence is one of the distinctive signatures of aging that is most commonly found on excavated glass. In this work, we present an ancient glass fragment that exhibits structural color through surface weathering resulting in iridescent patinas caused by silica reprecipitation in nanoscale lamellae. This archaeological artifact reveals an unusual hierarchically assembled photonic crystal with extremely ordered nanoscale domains, high spectral selectivity, and reflectivity (~90%), that collectively behaves like a gold mirror. Optical characterization paired with nanoscale elemental analysis further underscores the high quality of this structure providing a window into this sophisticated natural photonic crystal assembled by time.

4.
Proc Natl Acad Sci U S A ; 119(6)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131857

RESUMO

Photonic time-crystals (PTCs) are spatially homogeneous media whose electromagnetic susceptibility varies periodically in time, causing temporal reflections and refractions for any wave propagating within the medium. The time-reflected and time-refracted waves interfere, giving rise to Floquet modes with momentum bands separated by momentum gaps (rather than energy bands and energy gaps, as in photonic crystals). Here, we present a study on the emission of radiation by free electrons in PTCs. We show that a free electron moving in a PTC spontaneously emits radiation, and when associated with momentum-gap modes, the electron emission process is exponentially amplified by the modulation of the refractive index. Moreover, under strong electron-photon coupling, the quantum formulation reveals that the spontaneous emission into the PTC bandgap experiences destructive quantum interference with the emission of the electron into the PTC band modes, leading to suppression of the interdependent emission. Free-electron physics in PTCs offers a platform for studying a plethora of exciting phenomena, such as radiating dipoles moving at relativistic speeds and highly efficient quantum interactions with free electrons.

5.
Nano Lett ; 24(20): 5958-5967, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738749

RESUMO

Micro/nanorobots hold the potential to revolutionize biomedicine by executing diverse tasks in hard-to-reach biological environments. Nevertheless, achieving precise drug delivery to unknown disease sites using swarming micro/nanorobots remains a significant challenge. Here we develop a heterogeneous swarm comprising sensing microrobots (sensor-bots) and drug-carrying microrobots (carrier-bots) with collaborative tasking capabilities for precise drug delivery toward unknown sites. Leveraging robust interspecific hydrodynamic interactions, the sensor-bots and carrier-bots spontaneously synchronize and self-organize into stable heterogeneous microswarms. Given that the sensor-bots can create real-time pH maps employing pH-responsive structural-color changes and the doxorubicin-loaded carrier-bots exhibit selective adhesion to acidic targets via pH-responsive charge reversal, the sensor-carrier microswarm, when exploring unknown environments, can detect and localize uncharted acidic targets, guide itself to cover the area, and finally deploy therapeutic carrier-bots precisely there. This versatile platform holds promise for treating diseases with localized acidosis and inspires future theranostic microsystems with expandability, task flexibility, and high efficiency.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Doxorrubicina/química , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Acidose , Humanos , Portadores de Fármacos/química , Robótica
6.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37982545

RESUMO

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

7.
Nano Lett ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225684

RESUMO

Atomically thin transition metal dichalcogenides (TMDs) with ambient stable exciton resonances have emerged as an ideal material platform for exciton-polaritons. In particular, the strong coupling between excitons in TMDs and optical resonances in anisotropic photonic nanostructures can form exciton-polaritons with polarization selectivity, which offers a new degree of freedom for the manipulation of the light-matter interaction. In this work, we present the experimental demonstration of polarization-controlled exciton-polaritons in tungsten disulfide (WS2) strongly coupled with polarization singularities in the momentum space of low-symmetry photonic crystal (PhC) nanostructures. The utilization of polarization singularities can not only effectively modulate the polarization states of exciton-polaritons in the momentum space but also facilitate or suppress their far field coupling capabilities by tuning the in-plane momentum. Our results provide new strategies for creating polarization-selective exciton-polaritons.

8.
Nano Lett ; 24(1): 319-325, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147350

RESUMO

Silicon T centers present the promising possibility of generating optically active spin qubits in an all-silicon device. However, these color centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line. Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect. In this work, we demonstrate cavity-enhanced emission from a single T center in a nanophotonic cavity. We achieve a 2 order of magnitude increase in the brightness of the zero-phonon line relative to waveguide-coupled emitters, a 23% collection efficiency from emitter to fiber, and an overall emission efficiency into the zero-phonon line of 63.4%. We also observe a lifetime enhancement of 5, corresponding to a Purcell factor exceeding 18 when correcting for the emission to the phonon sideband. These results pave the way toward efficient spin-photon interfaces in silicon photonics.

9.
Small ; 20(3): e2302550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726238

RESUMO

The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge. In this work, the pH regulator is added in the process of emulsion polymerization to solve the problem of phase transformation caused by the thermal decomposition of the initiator to produce H+ , directly achieving 40 wt.% PS nanospheres in the dispersion. Then oligomers and small-molecule salts are removed from the system via dialysis, and the pre-crystallized LPC system is efficiently prepared. Adjusting the particle size and the mass fraction of nanospheres is shown to be an efficient way to control the optical properties of LPCs. The rapid and large-area preparation of PC structural color fabric and the patterned PC structural color fabric with an iridescent effect is implemented by using LPCs as the assembly intermediate. By constructing the encapsulation layer on the surface of the PC structural color fabric, the consistency of high structural stability and high color saturation of the PC is realized.

10.
Small ; 20(35): e2401664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651220

RESUMO

Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.

11.
Small ; 20(27): e2308814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282203

RESUMO

There is a recent resurgence of interest in phage therapy (the therapeutic use of bacterial viruses) as an approach to eliminating difficult-to-treat infections. However, existing approaches for therapeutic phage selection and virulence testing are time-consuming, host-dependent, and facing reproducibility issues. Here, this study presents an innovative approach wherein integrated resonant photonic crystal (PhC) cavities in silicon are used as optical nanotweezers for probing and manipulating single bacteria and single virions with low optical power. This study demonstrates that these nanocavities differentiate between a bacterium and a phage without labeling or specific surface bioreceptors. Furthermore, by tailoring the spatial extent of the resonant optical mode in the low-index medium, phage distinction across phenotypically distinct phage families is demonstrated. The work paves the road to the implementation of optical nanotweezers in phage therapy protocols.


Assuntos
Bacteriófagos , Pinças Ópticas , Vírion , Bacteriófagos/fisiologia
12.
Small ; : e2403525, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087369

RESUMO

Living organisms in nature possess diverse and vibrant structural colors generated from their intrinsic surface micro/nanostructures. These intricate micro/nanostructures can be harnessed to develop a new generation of colorful materials for various fields such as photonics, information storage, display, and sensing. Recent advancements in the fabrication of photonic crystals have enabled the preparation of structurally colored materials with customized geometries using 3D printing technologies. Here, a comprehensive review of the historical development of fabrication methods for photonic crystals is provided. Diverse 3D printing approaches along with the underlying mechanisms, as well as the regulation methods adopted to generate photonic crystals with structural color, are discussed. This review aims to offer the readers an overview of the state-of-the-art 3D printing techniques for photonic crystals, present a guide and considerations to fabricate photonic crystals leveraging different 3D printing methods.

13.
Anal Biochem ; 684: 115374, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914005

RESUMO

The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.


Assuntos
Técnicas Biossensoriais , Receptor ErbB-2 , Humanos , Receptor ErbB-2/sangue , Fluorescência , Anticorpos Monoclonais/química , Dispositivos Lab-On-A-Chip , Análise Serial de Proteínas
14.
Nanotechnology ; 35(16)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232400

RESUMO

Room temperature lateral p+-i-n+light-emitting diodes (LEDs) with photonic crystals embedded in the i-region were fabricated on structures with Ge(Si) self-assembled islands and their optical properties were investigated. The use of preliminary amorphization and solid phase epitaxy of the implanted p+and n+contact regions made it possible to reduce the impurity activation temperature from 800 °Ð¡-1100 °Ð¡ to 600 °Ð¡, which corresponds to the growth temperature of Ge(Si) islands. This resulted in a significant reduction of the detrimental effect of the high-temperature annealing used for diode formation on the intensity and spectral position of the luminescence signal from the islands. It was shown that significant enhancement (more than an order of magnitude) of room temperature electroluminescence of Ge(Si) islands in the spectral range of 1.3-1.55µm can be achieved due to their interaction with different modes of the photonic crystals. The measured radiation power of the obtained diodes in the spectral range of 1.3-1.55µm exceeds 50 pW at a pump current of 8 mA, which is an order of magnitude higher than the previously achieved values for micro-LEDs with Ge(Si) nanoislands. The obtained results open up new possibilities for the realization of silicon-based light emitting devices operating at telecommunication wavelengths.

15.
Opt Mater (Amst) ; 1472024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283740

RESUMO

The metal-ligand complex tris(2,2'-bipyridine)ruthenium(II) chloride (Ru probe) displays a broad emission spectrum ranging from 540 to 730 nm. The emission spectra of Ru probe were measured when placed on top of a one-dimensional photonic crystal (1DPC), which supports both Bloch surface wave (BSW) and internal modes for wavelengths below 640 nm and only internal modes above 640 nm. The S-polarized emission spectra, with the electric vector parallel to the 1DPC surface, were found to be strongly dependent on the observation angle through the coupling prism. Also, the usual single broad-emission spectrum of Ru probe on glass was converted into two or more narrow-band-spectrum on the 1DPC, with emission band maxima dependent on the observation angle. The two S-polarized emission band peaks for Ru probe were found to be consistent with coupling to the BSW and first internal mode (IM1) of the 1DPC. The same spectral shifts and changes in emission maxima were observed by using Kretschmann and reverse Kretschmann illuminations. As the coupling requires the emitter to be in proximity with the photonic structure, we calculated near- and far-field distributions of a dipole directly located on the 1DPC surface. Finite-Difference Time-Domain (FDTD) simulations were performed to confirm fluorophore coupling to the BSW and internal modes (IMs). Both the measured and simulated results showed that IM coupled emission is significant. Coupling to the IM mode occurred at longer wavelengths where the 1DPC did not support a BSW. These results demonstrate that a simple Bragg grating, without a BSW mode, can be used for detection of surface-bound fluorophores.

16.
Nano Lett ; 23(16): 7389-7396, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37498627

RESUMO

Structural color always shows a reversible switch between reflection and transmission states when viewed from different angles, attracting increasing attention in display applications. However, this switching between reflection and transmission states of structural color suffers from the inherent lack of autonomous regulation, which is unmanageable in the case of different application scenarios. Here, we design an intelligent two-way structural color film which can reversibly change its color when applied with an extra stimulation such as voltage, heat signal, or light. A special structural feature contains a traditional photonic crystal film of polystyrene (PS) microspheres assembled by smart windows. Remarkably, our structural color film shows a prominent polarization sensitivity, and the angle dependence of the structural color broadens the gamut of display color demonstrated by both finite element theoretical analysis and experimental observation. Prospectively, this hierarchically designed film provides a promising pathway toward next-generation multicolor displays and smart windows.

17.
Nano Lett ; 23(5): 1981-1988, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847818

RESUMO

Integrating plasmonic resonance into photonic bandgap nanostructures promises additional control over their optical properties. Here, one-dimensional (1D) plasmonic photonic crystals with angular-dependent structural colors are fabricated by assembling magnetoplasmonic colloidal nanoparticles under an external magnetic field. Unlike conventional 1D photonic crystals, the assembled 1D periodic structures show angular-dependent colors based on the selective activation of optical diffraction and plasmonic scattering. They can be further fixed in an elastic polymer matrix to produce a photonic film with angular-dependent and mechanically tunable optical properties. The magnetic assembly enables precise control over the orientation of the 1D assemblies within the polymer matrix, producing photonic films with designed patterns displaying versatile colors from the dominant backward optical diffraction and forward plasmonic scattering. The combination of optical diffraction and plasmonic properties within a single system holds the potential for developing programmable optical functionalities for applications in various optical devices, color displays, and information encryption systems.

18.
Small ; 19(12): e2206461, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587969

RESUMO

Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors. Here, a facilely prepared supramolecular photonic hydrogel biosensor is developed for high-sensitivity detection of alkaline phosphatase (ALP), which is an extensively considered clinical biomarker for a variety of diseases. Responding to ALP results in the broken supramolecular crosslinking and thus increased lattice distancing of the photonic hydrogel driven by synergistic repulsive force between nanoparticles embedded in photonic crystal structure and osmotic swelling pressure. The biosensor shows sensitivity of 7.3 nm spectral shift per mU mL-1 ALP, with detection limit of 0.52 mU mL-1 . High-accuracy colorimetric detection can be realized via a smartphone, promoting point-of-care sensing and timely diagnosis of related pathological conditions.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Hidrogéis/química , Fosfatase Alcalina , Polímeros/química , Pressão Osmótica , Técnicas Biossensoriais/métodos
19.
Small ; 19(22): e2300309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855329

RESUMO

Photonic crystals (PC) are of great importance in technology, especially in optics and photonics. In general, the structural color of PCs responds to external stimuli primarily by changing their periodicity. Herein, the authors report on refractive index (RI) adaptive PCs. Cross-linked cholesteric films with interconnected nanopores exhibit a very low RI without light scattering. Transparent PC films with maximum reflectance in the ultravoilet (UV) region respond to various chemicals by changing the reflective color of the PC. The authors demonstrate its unique colorimetric chemical detections of hazardous organic liquids. Loading various chemicals into nanopores significantly shifts the structural color into the visible range depending on the chemical's RI. These results are unique in that the structural color of photonic films is mediated by RI changes rather than periodicity changes. In principle, nanoporous photonic crystal films can detect the RI of a chemical substance by its unique color. In contrast to volumetric changes, this sensing mechanism offers several advantages, including durability, excellent sensitivity, fast response time, and wide detection range. These results provide useful insight into stimulus-responsive PCs. The structural color of PC films can be effectively tuned by adjusting average RIs instead of changing periodicity.

20.
Small ; 19(28): e2301162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36988021

RESUMO

Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures. Here an all-printed photonic crystal (PC) microarray with portable device for at-home COVID-19 rapid antigen test is reported. The fluorescence-enhanced effect of PC amplifies the fluorescence intensity of the labeled probe, achieving detection of nucleocapsid (N-) protein down to 0.03 pg mL-1 . A portable fluorescence intensity measurement instrument gives the result (negative or positive) by the color of the indicator within 5 s after inserting the reacted PC microarray test card. The N protein in inactivated virus samples (with cycle threshold values of 26.6-40.0) can be detected. The PC microarray provides a general and easy-to-use method for the timely monitoring and eventual control of the global coronavirus pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteínas do Nucleocapsídeo/análise , Proteínas do Nucleocapsídeo/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA