Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Plant J ; 118(1): 263-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38078656

RESUMO

Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.


Assuntos
Capsicum , MicroRNAs , MicroRNAs/genética , Biotina , Northern Blotting , Isótopos , Capsicum/genética , Doenças das Plantas/genética
2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731455

RESUMO

Phytophthora capsici is an important plant pathogenic oomycete that causes great losses to vegetable production around the world. Antofine is an important alkaloid isolated from Cynanchum komarovii Al. Iljinski and exhibits significant antifungal activity. In this study, the effect of antofine on the mycelial growth, morphology, and physiological characteristics of P. capsici was investigated using colorimetry. Meanwhile, the activity of mitochondrial respiratory chain complexes of P. capsici was evaluated following treatment with a 30% effective concentration (EC30), as well as EC50 and EC70, of antofine for 0, 12, 24, and 48 h. The results showed that antofine had a significant inhibitory effect against P. capsici, with an EC50 of 5.0795 µg/mL. After treatment with antofine at EC50 and EC70, the mycelia were rough, less full, and had obvious depression; they had an irregular protrusion structure; and they had serious wrinkles. In P. capsici, oxalic acid and exopolysaccharide contents decreased significantly, while cell membrane permeability and glycerol content increased when treated with antofine. Reactive oxygen species (ROS) entered a burst state in P. capsici after incubation with antofine for 3 h, and fluorescence intensity was 2.43 times higher than that of the control. The activities of the mitochondrial respiratory chain complex II, III, I + III, II + III, V, and citrate synthase in P. capsici were significantly inhibited following treatment with antofine (EC50 and EC70) for 48 h compared to the control. This study revealed that antofine is likely to affect the pathways related to the energy metabolism of P. capsici and thus affect the activity of respiratory chain complexes. These results increase our understanding of the action mechanism of antofine against P. capsici.


Assuntos
Phytophthora , Espécies Reativas de Oxigênio , Phytophthora/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antifúngicos/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
3.
Physiol Mol Biol Plants ; 30(1): 33-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435849

RESUMO

Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01414-z.

4.
Mol Plant Microbe Interact ; 36(6): 359-371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802868

RESUMO

Eicosapolyenoic fatty acids are integral components of oomycete pathogens that can act as microbe-associated molecular patterns to induce disease resistance in plants. Defense-inducing eicosapolyenoic fatty acids include arachidonic acid (AA) and eicosapentaenoic acid and are strong elicitors in solanaceous plants, with bioactivity in other plant families. Similarly, extracts of a brown seaweed, Ascophyllum nodosum, used in sustainable agriculture as a biostimulant of plant growth, may also induce disease resistance. A. nodosum, similar to other macroalgae, is rich in eicosapolyenoic fatty acids, which comprise as much as 25% of total fatty acid composition. We investigated the response of roots and leaves from AA or a commercial A. nodosum extract (ANE) on root-treated tomatoes via RNA sequencing, phytohormone profiling, and disease assays. AA and ANE significantly altered transcriptional profiles relative to control plants, inducing numerous defense-related genes with both substantial overlap and differences in gene expression patterns. Root treatment with AA and, to a lesser extent, ANE also altered both salicylic acid and jasmonic acid levels while inducing local and systemic resistance to oomycete and bacterial pathogen challenge. Thus, our study highlights overlap in both local and systemic defense induced by AA and ANE, with potential for inducing broad-spectrum resistance against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oomicetos , Alga Marinha , Solanum lycopersicum , Solanum lycopersicum/genética , Ácidos Graxos , Resistência à Doença , Plantas , Extratos Vegetais , Doenças das Plantas/microbiologia
5.
BMC Genomics ; 24(1): 626, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864214

RESUMO

BACKGROUND: Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS: A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS: More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION: The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.


Assuntos
Capsicum , Phytophthora , Piper nigrum , Transcriptoma , Phytophthora/fisiologia , Piper nigrum/genética , Metaboloma , Flavonoides , Doenças das Plantas/genética
6.
J Exp Bot ; 74(5): 1675-1689, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36571808

RESUMO

Pathogen effectors can suppress various plant immune responses, suggesting that they have multiple targets in the host. To understand the mechanisms underlying plasma membrane-associated and effector-mediated immunity, we screened the Phytophthora capsici RxLR cell death-inducer suppressing immune system (CRISIS). We found that the cell death induced by the CRISIS2 effector in Nicotiana benthamiana was inhibited by the irreversible plasma membrane H+-ATPase (PMA) activator fusicoccin. Biochemical and gene-silencing analyses revealed that CRISIS2 physically and functionally associated with PMAs and induced host cell death independent of immune receptors. CRISIS2 induced apoplastic alkalization by suppressing PMA activity via its association with the C-terminal regulatory domain. In planta expression of CRISIS2 significantly enhanced the virulence of P. capsici, whereas host-induced gene-silencing of CRISIS2 compromised the disease symptoms and the biomass of the pathogen. Thus, our study has identified a novel RxLR effector that plays multiple roles in the suppression of plant defense and in the induction of cell death to support the pathogen hemibiotrophic life cycle in the host plant.


Assuntos
Phytophthora infestans , Morte Celular , Virulência , Nicotiana/genética , Membrana Celular , Adenosina Trifosfatases , Doenças das Plantas , Imunidade Vegetal/fisiologia
7.
Mol Breed ; 43(3): 20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37313294

RESUMO

Resistance of Capsicum annuum to Phytophthora blight is dependent on the genetic background of the resistance source and the Phytophthora capsici isolate, which poses challenges for development of generally applicable molecular markers for marker-assisted selection. In this study, the resistance to P. capsici of C. annuum was genetically mapped to chromosome 5 within a 1.68-Mb interval by genome-wide association study analysis of 237 accessions. In this candidate region, 30 KASP markers were developed using genome resequencing data for a P. capsici-resistant line (0601 M) and a susceptible line (77,013). Seven of these KASP markers, located in the coding region of a probable leucine-rich repeats receptor-like serine/threonine-protein kinase gene (Capana05g000704), were validated in the 237 accessions, which showed an average accuracy of 82.7%. The genotyping of the seven KASP markers strongly corresponded with the phenotype of 42 individual plants in a pedigree family (PC83-163) developed from the P. capsici-resistant line CM334. This research provides a set of efficient and high-throughput KASP markers for marker-assisted selection of resistance to P. capsici in C. annuum. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01367-3.

8.
Phytopathology ; 113(6): 921-930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36401843

RESUMO

In 1922, Phytophthora capsici was described by Leon Hatching Leonian as a new pathogen infecting pepper (Capsicum annuum), with disease symptoms of root rot, stem and fruit blight, seed rot, and plant wilting and death. Extensive research has been conducted on P. capsici over the last 100 years. This review succinctly describes the salient mile markers of research on P. capsici with current perspectives on the pathogen's distribution, economic importance, epidemiology, genetics and genomics, fungicide resistance, host susceptibility, pathogenicity mechanisms, and management.


Assuntos
Capsicum , Fungicidas Industriais , Phytophthora , Phytophthora/genética , Doenças das Plantas
9.
Phytopathology ; 113(10): 1959-1966, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37246966

RESUMO

Phytophthora capsici is one of the most devastating pathogens facing pepper (Capsicum annuum) producers worldwide. Numerous factors, such as the race of the pathogen, the growing environment, and the source of resistance, have resulted in an overall lack of widely applicable molecular markers associated with resistance. Our objective was to determine the effect of the rating system on quantitative trait locus (QTL) detection and understand inheritance patterns of host resistance that can influence selection and molecular marker accuracy. We evaluated an F2:11 recombinant inbred line population screened against the highly virulent strain (Pc134) and scored using two widely used methods, developed by Bosland and Lindsey and by Black. The rating system developed by Bosland and Lindsey resulted in slightly higher logarithm of odds for the QTL on chromosome 5, and we detected a QTL on chromosome 12 uniquely using this rating system. A QTL on chromosome 10 was detected using both rating systems, but Black resulted in considerably higher logarithm of odds for this QTL compared with the Bosland and Lindsey system. Molecular markers developed were nominally better at accurately predicting the phenotype than previously published molecular markers but did not completely explain resistance in our validation populations. The inheritance pattern of resistance in one of our F2 populations did not significantly deviate from a 7:9 segregation ratio, indicating duplicative recessive epistasis. However, these results could be confounded by the presence of incomplete gene action, which was found through the improved selection accuracy when the phenotypes of heterozygous individuals were grouped with those with susceptible alleles.


Assuntos
Capsicum , Phytophthora , Humanos , Locos de Características Quantitativas/genética , Capsicum/genética , Epistasia Genética , Phytophthora/genética , Doenças das Plantas/genética , Resistência à Doença/genética
10.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108663

RESUMO

Asparagine (Asn, N)-linked glycosylation is a conserved process and an essential post-translational modification that occurs on the NXT/S motif of the nascent polypeptides in endoplasmic reticulum (ER). The mechanism of N-glycosylation and biological functions of key catalytic enzymes involved in this process are rarely documented for oomycetes. In this study, an N-glycosylation inhibitor tunicamycin (TM) hampered the mycelial growth, sporangial release, and zoospore production of Phytophthora capsici, indicating that N-glycosylation was crucial for oomycete growth development. Among the key catalytic enzymes involved in N-glycosylation, the PcSTT3B gene was characterized by its functions in P. capsici. As a core subunit of the oligosaccharyltransferase (OST) complex, the staurosporine and temperature sensive 3B (STT3B) subunit were critical for the catalytic activity of OST. The PcSTT3B gene has catalytic activity and is highly conservative in P. capsici. By using a CRISPR/Cas9-mediated gene replacement system to delete the PcSTT3B gene, the transformants impaired mycelial growth, sporangial release, zoospore production, and virulence. The PcSTT3B-deleted transformants were more sensitive to an ER stress inducer TM and display low glycoprotein content in the mycelia, suggesting that PcSTT3B was associated with ER stress responses and N-glycosylation. Therefore, PcSTT3B was involved in the development, pathogenicity, and N-glycosylation of P. capsici.


Assuntos
Phytophthora , Glicosilação , Virulência/genética , Proteínas de Membrana/metabolismo
11.
Molecules ; 28(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049722

RESUMO

Phytophthora capsici is a highly destructive phytopathogenic oomycete with a broad host range and is responsible for tremendous losses. Euphorbia factor L3 (EFL3) is a natural plant-derived compound that has been widely studied in medicine and cosmetic applications. In this study, the sensitivity of 105 P. capsici isolates to EFL3 was determined, and the biological activity and physiological effects of EFL3 against P. capsici were investigated. The median effective concentration (EC50) values for EFL3 inhibition mycelial growth and spore germination ranged from 0.66 to 8.94 µg/mL (mean, 2.96 ± 0.91 µg/mL) and 1.63 to 13.16 µg/mL (mean, 5.30 ± 1.64 µg/mL), respectively. EFL3 treatment resulted in cell wall and cell membrane damage of P. capsici, which was revealed by morphological and ultrastructural observations, propidium iodide (PI) and calcofluor white (CFW) staining, and measurements of relative conductivity as well as malondialdehyde (MDA) and glycerol contents. In addition, the contents of phospholipid and cellulose, which are the major components of cell membrane and cell wall, were significantly reduced following EFL3 treatment. Furthermore, EFL3 provided protective as well as curative efficacies against P. capsici on detached tomato leaves and pepper seedlings in vivo. These data show that EFL3 exhibits strong inhibitory activity against P. capsici, thereby suggesting that it could be an effective alternative for controlling P. capsici-induced diseases.


Assuntos
Euphorbia , Phytophthora , Membrana Celular , Parede Celular , Folhas de Planta , Doenças das Plantas/prevenção & controle
12.
Mol Plant Microbe Interact ; 35(11): 1018-1033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35914305

RESUMO

The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Capsicum , Phytophthora , Phytophthora/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Capsicum/genética
13.
Mol Biol Rep ; 49(6): 5717-5728, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35701684

RESUMO

BACKGROUND: Chilli is an important commercial crop with positive returns tendency. Phytophthora root rot causes drastic damage to chilli plant. Dearth of detecting marker trait associations is a major hinderance in practicing marker assisted selection in chilli breeding. METHODS AND RESULTS: Herein, 110 chilli accessions were assessed for 15 agronomic traits under control and disease infected conditions for two crop seasons (2018-2019). The SSR genotyping revealed high values of major allele frequency (MAF = 0.70), genetic diversity (GD = 0.39) and Polymorphic Information Content (PIC = 0.31). Principal coordinate analysis and population structure analysis showed distribution of diverse genotypes in all groups by dividing 110 genotypes in three populations and nine sub-populations. The UPGMA based Archaeopteryx tree was in concordance with population structure analysis. Linkage disequilibrium analysis evaluated that LD decays within 3-10 bp. Marker trait association (MTA) revealed the associations of 35 SSRs with 14 morphological traits. The significant MTA for marker CAeMS073 with relative leaf damage (RLD, 0.183 R2) under control and treated conditions was consistently observed in both models. The markers, CAMS173 and CAMS194 were found to be strongly associated with RLD and Disease Index (DI), respectively. The absence of MTA was detected for height of first branch. CONCLUSION: The MTAs reported in this study can facilitate marker assisted breeding for developing chilli germplasm resistant against Phytophthora capsici.


Assuntos
Phytophthora , Variação Genética/genética , Genótipo , Fenótipo , Melhoramento Vegetal
14.
J Appl Microbiol ; 132(4): 3111-3124, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35061923

RESUMO

AIM: To understand how beneficial bacteria assist chilli plants (Capsicum annuum) in defence against biotrophic or hemibiotrophic pathogens. METHOD AND RESULTS: We quantified marker genes of plant defence pathways in Phytophthora capsici-infected chilli pepper treated with anti-oomycete plant growth-promoting rhizobacteria, Bacillus amyloliquefaciens, Bacillus velezensis and Acinetobacter sp. Plants displayed strong resistance, and the pathogen load in the roots was significantly lower in infected plants treated with bacterial biocontrol agents at all time points tested (1, 2 and 7 days after pathogen inoculation, p < 0.05). Gene expression profiling revealed that P. capsici infection in the absence of beneficial bacteria led to the upregulation of a wide array of defence genes. The addition of biocontrol bacteria modulated defence by further enhancing genes involved in programmed cell death, such as CaLOX1, CaPAL1, CaChitIV and CaPTI1, while suppressing others CaLRR1, a negative regulator of cell death. CONCLUSIONS: Our results suggest that the bacteria exerted a combined effect by directly antagonizing the pathogen and enhancing the expression of key plant defence genes, including those involved in cell death, causing resistance at early stages of infection by this hemibiotrophic pathogen.


Assuntos
Capsicum , Phytophthora , Apoptose , Bactérias , Capsicum/genética , Capsicum/microbiologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera
15.
Pestic Biochem Physiol ; 184: 105125, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715063

RESUMO

Phytophthora capsici is a highly destructive oomycete of vegetables; its management is challenging due to its broad host range, rapid dispersion, resilient spores and severe fungicide resistance. Identifying an effective alternative fungicide is important for the control of P. capsici. 1,6-O,O-diacetylbritannilactone (ABLOO), one of the secondary metabolites of Inula Britannica, showed a favorable inhibitory activity against P. capsici at different developmental stages, with a sensitivity order as follows: sporangia formation (30.45 mg/L) > zoospore discharge (77.69 mg/L) > mycelial growth (93.18 mg/L) > cystospore germination (591.48 mg/L). To investigate the mode of action of ABLOO in P. capsici, iTRAQ-based quantitative proteomic analysis was performed by comparing the expression levels of proteins in the control and ABLOO-treated (400 mg/L, inhibition rate of 80%) mycelial groups. A total of 65 downregulated and 75 upregulated proteins were identified in the proteomic analysis. Functional enrichment analyses showed that proteins with transmembrane transport activity were significantly inhibited, while proteins involved in energy production were significantly increased, including proteins involved in ubiquinone and other terpenoid-quinone biosynthesis, oxidative phosphorylation, and glycolysis/gluconeogenesis. The morphological results indicated that ABLOO treatment could decrease the thickness of the cell walls of P. capsici mycelia. Correspondingly, biochemical results showed that ABLOO treatment reduced the ß-1,3-glucan contents (the key component of the cell wall of P. capsici) and increased the cell membrane permeability of P. capsici. ABLOO may exhibit antioomycete activity by destroying the cell membrane of P. capsici. This study provides new evidence regarding the inhibitory mechanisms of ABLOO against P. capsici.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Lactonas , Doenças das Plantas/prevenção & controle , Plantas , Proteínas , Proteômica/métodos , Sesquiterpenos
16.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887401

RESUMO

Vitis vinifera plants are disease-susceptible while Vitis pseudoreticulata plants are disease-resistant; however, the molecular mechanism remains unclear. In this study, the single-stranded DNA- and RNA-binding protein gene Whirly (VvWhy1 and VpWhy1) were cloned from V. vinifera "Cabernet Sauvignon" and V. pseudoreticulata "HD1". VvWhy1 and VpWhy1 promoter sequences (pVv and pVp) were also isolated; however, the identity of the promoter sequences was far lower than that between the Why1 coding sequences (CDSs). Both Why1 gene sequences had seven exons and six introns, and they had a C-terminal Whirly conserved domain and N-terminal chloroplast transit peptide, which was then verified to be chloroplast localization. Transcriptional expression showed that VpWhy1 was strongly induced by Plasmopara viticola, while VvWhy1 showed a low expression level. Further, the GUS activity indicated pVp had high activity involved in response to Phytophthora capsici infection. In addition, Nicotiana benthamiana transiently expressing pVp::VvWhy1 and pVp::VpWhy1 enhanced the P. capsici resistance. Moreover, Why1, PR1 and PR10 were upregulated in pVp transgenic N. benthamiana leaves. This research presented a novel insight into disease resistance mechanism that pVp promoted the transcription of Why1, which subsequently regulated the expression of PR1 and PR10, further enhancing the resistance to P. capsici.


Assuntos
Phytophthora , Vitis , DNA de Cadeia Simples/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Phytophthora/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo
17.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500729

RESUMO

Pathogenic plant oomycetes cause devastating damage to fruits and vegetables worldwide. Plant essential oils (EOs) are known to be promising candidates for the development of fungicides. In this study, we isolated twelve EOs from Tetradium ruticarpum, Tetradium daniellii, Tetradium fraxinifolium, Zanthoxylum armatum, Ruta graveolens, and Citrus medica leaves and fruits. We then investigated their chemical composition and antifungal activity against phytopathogenic oomycetes. Our results demonstrated that Z. armatum fruit essential oil (ZFO) in particular substantially inhibited the mycelial growth of Phytophthora capsici. Similarly, ZFO also strongly suppressed spore production and germination of P. capsici, and the application of ZFO significantly reduced disease symptoms caused by P. capsici in pepper. Furthermore, results from microscopic and biochemical studies indicated that ZFO damaged the ultrastructure and destroyed the membrane integrity of P. capsici, leading to the leakage of the cellular contents and ultimately causing cell death. It was concluded that ZFO could enhance the activities of defense-related enzymes in pepper fruits, which may also be responsible for the inhibition of phytophthora disease. Moreover, linalool and D-limonene were proven to be the primary effective components of ZFO. Our results collectively indicate that ZFO could be a potential candidate for the management of disease caused by P. capsici.


Assuntos
Fungicidas Industriais , Óleos Voláteis , Phytophthora , Óleos Voláteis/farmacologia , Frutas , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia
18.
Physiol Mol Biol Plants ; 28(1): 171-188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221578

RESUMO

Chili pepper (Capsicum annuum L.) is economically one of the most important spice. But, it's productivity is highly affected by the pathogen, Phytophthora capsici L. Our current understanding of the molecular mechanisms associated with the defence response in C. annuum-P. capsici pathosystem is limited. The current study used RNA-seq technology to dissect the genes associated with defence response against P. capsici infection in two contrasting landraces, i.e. GojamMecha_9086 (Resistant) and Dabat_80045 (Susceptible) exposed to P. capsici infection. The transcriptomes from four leaf samples (RC, RI, SC and SI) of chili pepper resulted in a total of 118,879 assembled transcripts along with 52,384 pooled unigenes. The enrichment analysis of the transcripts indicated 23 different KEGG pathways under five main categories. Out of 774 and 484 differentially expressed genes (DEGs) of two landraces (under study), respectively, 57 and 29 DEGs were observed as associated with defence responses against P. capsici infection in RC vs. RI and SC vs. SI leaf samples, respectively. qRT-PCR analysis of six randomly selected genes validated the results of Illumina NextSeq500 sequencing. A total of 58 transcription factor families (bHLH most abundant) and 2095 protein families (Protein kinase most abundant) were observed across all the samples with maximum hits in RI and SI samples. Expression analysis revealed differential regulation of genes associated with defence and signalling response with shared coordination of molecular function, cellular component and biological processing. The results presented here would enhance our present understanding of the defence response in chili pepper against P. capsici infection, which the molecular breeders could utilize to develop resistant chili genotypes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01122-y.

19.
Mol Plant Microbe Interact ; 34(7): 866-869, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33720746

RESUMO

The soilborne oomycete Phytophthora capsici is the most destructive pathogen of vegetable crops and is responsible for substantial economic losses worldwide. Here, we present an improved genome assembly of P. capsici generated by Oxford Nanopore long-read sequencing (for de novo assembly) and Illumina short-read sequencing (for polishing). The genome of P. capsici is 100.5 Mb in length (GC content = 50.8%) and contains 26,069 predicted protein-coding genes. The whole genome of P. capsici is assembled into 194 scaffolds, 90% of which are larger than 300 kb. The N50 scaffold length and maximum scaffold length are 1.0 and 4.1 Mb, respectively. The whole-genome sequence of P. capsici will broaden our knowledge of this pathogen and enhance our understanding of the molecular basis of its pathogenicity, which will facilitate the development of effective management strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Phytophthora/genética , Virulência
20.
Mol Plant Microbe Interact ; 34(2): 157-167, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33103962

RESUMO

Diseases caused by the notorious Phytophthora spp. result in enormous economic losses to crops and forests. Increasing evidence suggests that small open reading frame-encoded polypeptides (SEPs) participate in environmental responses of animals, plants, and fungi. However, it remains largely unknown whether Phytophthora pathogens produce SEPs. Here, we systematically predicted and identified 96 SEP candidates in P. capsici. Among them, three may induce stable cell death in Nicotiana benthamiana. Phytophthora-specific and conserved SEP1 facilitated P. capsici infection. PcSEP1-induced cell death is BAK1 and SOBIR1 independent and is correlated with its virulence function. Finally, PcSEP1 may be targeted to the apoplast for carrying out its functions, for which the C terminus is indispensable. Together, our results demonstrated that SEP1 is a new virulence factor, and previously unknown SEPs may act as effector proteins in Phytophthora pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Genes de Protozoários , Phytophthora , Fatores de Virulência , Genes de Protozoários/genética , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Nicotiana/parasitologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA