Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Planta ; 259(5): 105, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551685

RESUMO

MAIN CONCLUSION: Monoterpenes and phenolics play distinct roles in defending white spruce trees from insect defoliators. Monoterpenes contribute to the toxicity of the foliage, deterring herbivory, whereas phenolics impede budworm growth. This study demonstrates the complex interplay between monoterpenes and phenolics and their collective influence on the defense strategy of white spruce trees against a common insect defoliator. Long-lived coniferous trees display considerable variations in their defensive chemistry. The impact of these defense phenotype variations on insect herbivores of the same species remains to be thoroughly studied, mainly due to challenges in replicating the comprehensive defense profiles of trees under controlled conditions. This study methodically examined the defensive properties of foliar monoterpenes and phenolics across 80 distinct white spruce families. These families were subsequently grouped into two chemotypes based on their foliar monoterpene concentrations. To understand the separate and combined effects of these classes on tree defenses to the eastern spruce budworm, we conducted feeding experiments using actual defense profiles from representative families. Specifically, we assessed budworm response when exposed to substrates amended with phenolics alone or monoterpenes. Our findings indicate that the ratios and amounts of monoterpenes and phenolics present in the white spruce foliage influence the survival of spruce budworms. Phenotypes associated with complete larval mortality exhibited elevated ratios (ranging from 0.4 to 0.6) and concentrations (ranging from 1143 to 1796 ng mg-1) of monoterpenes. Conversely, families characterized by higher phenolic ratios (ranging from 0.62 to 0.77) and lower monoterpene concentrations (ranging from 419 to 985 ng mg-1) were less lethal to the spruce budworm. Both classes of defense compounds contribute significantly to the overall defensive capabilities of white spruce trees. Monoterpenes appear critical in determining the general toxicity of foliage, while phenolics play a role in slowing budworm development, thereby underscoring their collective importance in white spruce defenses.


Assuntos
Mariposas , Picea , Animais , Picea/genética , Mariposas/fisiologia , Larva/fisiologia , Monoterpenos , Árvores , Fenóis
2.
Plant Cell Environ ; 46(1): 45-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151613

RESUMO

Light availability drives vertical canopy gradients in photosynthetic functioning and carbon (C) balance, yet patterns of variability in these gradients remain unclear. We measured light availability, photosynthetic CO2  and light response curves, foliar C, nitrogen (N) and pigment concentrations, and the photochemical reflectance index (PRI) on upper and lower canopy needles of white spruce trees (Picea glauca) at the species' northern and southern range extremes. We combined our photosynthetic data with previously published respiratory data to compare and contrast canopy C balance between latitudinal extremes. We found steep canopy gradients in irradiance, photosynthesis and leaf traits at the southern range limit, but a lack of variation across canopy positions at the northern range limit. Thus, unlike many tree species from tropical to mid-latitude forests, high latitude trees may not require vertical gradients of metabolic activity to optimize photosynthetic C gain. Consequently, accounting for self-shading is less critical for predicting gross primary productivity at northern relative to southern latitudes. Northern trees also had a significantly smaller net positive leaf C balance than southern trees suggesting that, regardless of canopy position, low photosynthetic rates coupled with high respiratory costs may ultimately constrain the northern range limit of this widely distributed boreal species.


Assuntos
Picea
3.
Mol Ecol ; 31(20): 5165-5181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35951000

RESUMO

Climate change is increasing the frequency and intensity of drought events in many boreal forests. Trees are sessile organisms with a long generation time, which makes them vulnerable to fast climate change and hinders fast adaptations. Therefore, it is important to know how forests cope with drought stress and to explore the genetic basis of these reactions. We investigated three natural populations of white spruce (Picea glauca) in Alaska, located at one drought-limited and two cold-limited treelines with a paired plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees and climate data to assess dendrophenotypes, in particular the growth reaction to drought stress. To explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3000 single nucleotide polymorphisms in candidate genes and performed genotype-phenotype association analysis using linear mixed models and Bayesian sparse linear mixed models. Growth reaction to drought stress differed in contrasting treeline populations. Therefore, the populations are likely to be unevenly affected by climate change. We identified 40 genes associated with dendrophenotypic traits that differed among the treeline populations. Most genes were identified in the drought-limited site, indicating comparatively strong selection pressure of drought-tolerant phenotypes. Contrasting patterns of drought-associated genes among sampled sites and in comparison to Canadian populations in a previous study suggest that drought adaptation acts on a local scale. Our results highlight genes that are associated with wood traits which in turn are critical for the establishment and persistence of future forests under climate change.


Assuntos
Picea , Traqueófitas , Teorema de Bayes , Canadá , Mudança Climática , Secas , Florestas
4.
Plant Cell Environ ; 45(7): 2078-2092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419840

RESUMO

White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.


Assuntos
Picea , Aclimatação/fisiologia , Folhas de Planta/fisiologia , Respiração , Temperatura , Árvores/fisiologia
5.
Glob Chang Biol ; 28(17): 5172-5184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714046

RESUMO

Under climate change circumstances, increasing studies have reported the temporal instability of tree growth responses to climate, which poses a major challenge to linearly extrapolating past climate and future growth dynamics using tree-ring data. Space-for-time substitution (SFTS) is a potential solution to this problem that is widely used in the dendrochronology field to project past or future temporal growth response trajectories from contemporary spatial patterns. However, the projected accuracy of the SFTS in the climate effects on tree growth remains uncertain. Here, we empirically test the SFTS method by comparing the effect of spatial and temporal climate variations on climate responses of white spruce (Picea glauca), which has a transcontinental range in North America. We first applied a response surface regression model to capture the variations in growth responses along the spatial climate gradients. The results showed that the relationships between growth and June temperature varied along spatial climate gradients in a predictable way. And their relationships varied mainly along with local temperate condition. Then, the projected correlation coefficients between growth and climate using SFTS were compared against the observed. We found that the growth response changes caused by spatial versus temporal climate variations showed opposite trends. Moreover, the projected correlation coefficients using the SFTS were significantly lower than the observed. This finding suggests that applying the SFTS to project the growth response of white spruce might lead to an overestimation of the degree of tree maladaptation in future climate scenarios. And the overestimation is likely to get weaker from Alaska and Yukon Territory in the west to Quebec in the east. Although this is only a case study of the SFTS method for projecting tree growth response, our findings suggest that direct application of the SFTS method may not be applicable to all regions and all tree species.


Assuntos
Picea , Febre Grave com Síndrome de Trombocitopenia , Mudança Climática , Picea/fisiologia , Temperatura , Árvores
6.
Mol Biol Rep ; 48(3): 2963-2971, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635471

RESUMO

Due mainly to large genome size and prevalence of repetitive sequences in the nuclear genome of spruce (Picea Mill.), it is very difficult to develop single-copy genomic microsatellite markers. We have developed and characterized 25 polymorphic, single-copy genic microsatellites from white spruce (Picea glauca (Moench) Voss) EST sequences and determined their informativeness in white spruce and black spruce (Picea mariana (Mill.) B.S.P.) and inheritance in black spruce. White spruce EST sequences from NCBI dbEST were searched for the presence of microsatellite repeats. Forty-seven sequences containing dinucleotide, trinucleotide, tetranucleotide and compound repeats were selected to develop primers. Twenty-five of the designed primer pairs yielded scorable amplicons, with single-locus patterns, and were characterized in 20 individuals each of white spruce and black spruce. All 25 microsatellites were polymorphic in white spruce and 24 in black spruce. The number of alleles at a locus ranged from two to 18, with a mean of 8.8 in white spruce, and from one to 17, with a mean of 7.6 in black spruce. The expected heterozygosity/polymorphic information content ranged from 0.10 to 0.92, with a mean of 0.67 in white spruce, and from 0 to 0.93, with a mean of 0.59 in black spruce. Microsatellites with dinucleotide and compound repeats were more informative than those with trinucleotide and tetranucleotide repeats. Eighteen microsatellite markers polymorphic between the parents of a black spruce controlled cross inherited in a single-locus Mendelian fashion. The microsatellite markers developed can be applied for various genetics, genomics, breeding, and conservation studies and applications.


Assuntos
DNA de Plantas/genética , Etiquetas de Sequências Expressas/metabolismo , Dosagem de Genes , Repetições de Microssatélites/genética , Picea/genética , Distribuição de Qui-Quadrado , Genótipo , Padrões de Herança/genética , Motivos de Nucleotídeos/genética
7.
Glob Chang Biol ; 26(3): 1842-1856, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31799729

RESUMO

Tree growth at northern treelines is generally temperature-limited due to cold and short growing seasons. However, temperature-induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree-ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell-wall thickness, cell number) and TRW were correlated with the drought-sensitive standardized precipitation-evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925-1946), cool/wet (1947-1976) and again warm/dry (1977-1998) climate regimes. Xylem anatomical traits revealed water-limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture-driven shift in growth-limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture-driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.


Assuntos
Picea , América do Norte , Taiga , Árvores , Xilema
8.
Mycorrhiza ; 30(2-3): 173-183, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088844

RESUMO

For tree seedlings in boreal forests, ectomycorrhizal (EM) fungal networks may promote, while root competition may impede establishment. Thus, disruption to EM fungal networks may decrease seedling establishment owing to the loss of positive interactions among neighbors. Widespread tree mortality can disrupt EM networks, but it is not clear whether seedling establishment will be limited by the loss of positive interactions or increased by the loss of negative interactions with surrounding roots. Depending upon the relative influence of these mechanisms, widespread tree mortality may have complicated consequences on seedling establishment, and in turn, the composition of future forests. To discern between these possible outcomes and the drivers of seedling establishment, we determined the relative importance of EM fungal networks, root presence, and the bulk soil on the establishment of lodgepole pine and white spruce seedlings along a gradient of beetle-induced tree mortality. We manipulated seedling contact with EM fungal networks and roots through the use of mesh-fabric cylinders installed in soils of lodgepole pine forests experiencing a range of overstorey tree mortality caused by mountain pine beetle. Lodgepole pine seedling survival was higher with access to EM fungal networks in undisturbed pine forests in comparison with that in beetle-killed stands. That is, overstorey tree mortality shifted fungal networks from being a benefit to a cost on seedling survival. In contrast, overstorey tree mortality did not change the relative strength of EM fungal networks, root presence and the bulk soil on survival and biomass of white spruce seedlings. Furthermore, the relative influence of EM fungal networks, root presence, and bulk soils on foliar N and P concentrations was highly contingent on seedling species and overstorey tree mortality. Our results highlight that following large-scale insect outbreak, soil-mediated processes can enable differential population growth of two common conifer species, which may result in species replacement in the future.


Assuntos
Micorrizas , Pinus , Animais , Florestas , Plântula , Árvores
9.
Glob Chang Biol ; 25(3): 911-926, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30408264

RESUMO

The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate-growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long-term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate-growth response. The negative radial growth response to warm and dry early- to mid-summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13 C was reduced in warm, dry summers and further diminished on south-facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13 C discrimination, and increased intrinsic water-use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate-growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.


Assuntos
Mudança Climática , Monitoramento Ambiental , Picea/fisiologia , Taiga , Alaska , Isótopos de Carbono/metabolismo , Sequestro de Carbono , Secas , Picea/crescimento & desenvolvimento , Picea/metabolismo , Energia Solar
10.
Plant J ; 90(1): 189-203, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28090692

RESUMO

Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.


Assuntos
Genoma de Planta/genética , Picea/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Sintenia
11.
Ecology ; 99(6): 1284-1295, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569245

RESUMO

The boreal biome represents approximately one third of the world's forested area and plays an important role in global biogeochemical and energy cycles. Numerous studies in boreal Alaska have concluded that growth of black and white spruce is declining as a result of temperature-induced drought stress. The combined evidence of declining spruce growth and changes in the fire regime that favor establishment of deciduous tree species has led some investigators to suggest the region may be transitioning from dominance by spruce to dominance by deciduous forests and/or grasslands. Although spruce growth trends have been extensively investigated, few studies have evaluated long-term radial growth trends of the dominant deciduous species (Alaska paper birch and trembling aspen) and their sensitivity to moisture availability. We used a large and spatially extensive sample of tree cores from interior Alaska to compare long-term growth trends among contrasting tree species (white and black spruce vs. birch and aspen). All species showed a growth peak in the mid-1940s, although growth following the peak varied strongly across species. Following an initial decline from the peak, growth of white spruce showed little evidence of a trend, while black spruce and birch growth showed slight growth declines from ~1970 to present. Aspen growth was much more variable than the other species and showed a steep decline from ~1970 to present. Growth of birch, black and white spruce was sensitive to moisture availability throughout most of the tree-ring chronologies, as evidenced by negative correlations with air temperature and positive correlations with precipitation. However, a positive correlation between previous July precipitation and aspen growth disappeared in recent decades, corresponding with a rise in the population of the aspen leaf miner (Phyllocnistis populiella), an herbivorous moth, which may have driven growth to a level not seen since the early 20th century. Our results provide important historical context for recent growth and raise questions regarding competitive interactions among the dominant tree species and exchanges of carbon and energy in the warming climate of interior Alaska.


Assuntos
Picea , Traqueófitas , Alaska , Clima , Árvores
12.
BMC Genomics ; 18(1): 97, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100184

RESUMO

BACKGROUND: Copy number variations (CNVs) have been linked to different phenotypes in human, including many diseases. A genome-scale understanding of CNVs is available in a few plants but none are wild species, leaving a knowledge gap regarding their genome biology and evolutionary role. We developed a reliable CNV detection method for species lacking contiguous reference genome. We selected multiple probes within 14,078 gene sequences and developed comparative genome hybridization on arrays. Gene CNVs were assessed in three full-sib families from species with 20 Gb genomes, i.e., white and black spruce, and interior spruce - a natural hybrid. RESULTS: We discovered hundreds of gene CNVs in each species, 3612 in total, which were enriched in functions related to stress and defense responses and narrow expression profiles, indicating a potential role in adaptation. The number of shared CNVs was in accordance with the degree of relatedness between individuals and species. The genetically mapped subset of these genes showed a wide distribution across the genome, implying numerous structural variations. The hybrid family presented significantly fewer CNVs, suggesting that the admixture of two species within one genome reduces the occurrence of CNVs. CONCLUSIONS: The approach we developed is of particular interest in non-model species lacking a reference genome. Our findings point to a role for CNVs in adaptation. Their reduced abundance in the hybrid may limit genetic variability and evolvability of hybrids. We propose that CNVs make a qualitatively distinct contribution to adaptation which could be important for short term change.


Assuntos
Adaptação Fisiológica/genética , Variações do Número de Cópias de DNA , Genômica , Hibridização Genética/genética , Picea/genética , Picea/fisiologia , Reações Falso-Positivas , Genoma de Planta/genética
13.
Glob Chang Biol ; 23(12): 5509-5522, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28712139

RESUMO

Regional warming has led to increased productivity near the boreal forest margin in Alaska. To date, the effects of warming on seedling recruitment have received little attention, in spite of forecasted forest expansion. Here, we used stand structure and environmental data from 95 white spruce (Picea glauca) plots sampled across a longitudinal gradient in southwest Alaska to explore factors influencing spruce establishment and recruitment near western treeline. We used total counts of live seedlings, saplings, and trees, representing five life stages, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance, using current abundance distributions as a surrogate for climate conditions in the past. We used generalized linear models to test the null hypothesis that conditions favorable for recruitment were similar along the environmental gradient represented by longitude, by exploring relationships between per-plot counts of each life stage and the covariates hypothesized to affect abundance. We also examined the relationship between growing degree days (GDD) and seedling establishment over a period of three decades using tree-ring chronologies obtained from cores taken at a subset of our sites (n = 30). Our results indicated that seedling, sapling, and tree abundance were positively correlated with temperature across the study area. The response to longitude was mixed, with earlier life stages (seedlings, saplings) most abundant at the western end of the gradient, and later life stages (trees) most abundant to the east. The differential relationship between longitude and life-stage abundance suggests a moving front of white spruce establishment through time, driven by changes in environmental conditions near the species' western range limit. Likewise, we found a positive relationship between periods of seedling establishment and GDD, suggesting that longer summers and/or greater heat accumulation might enhance establishment, consistent with the positive relationship we found between life-stage abundance and temperature.


Assuntos
Mudança Climática , Picea/fisiologia , Taiga , Alaska , Monitoramento Ambiental , Estações do Ano , Plântula/fisiologia , Temperatura
14.
Glob Chang Biol ; 23(12): 5297-5308, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28636146

RESUMO

Since 2001, climatic conditions have been notably drier than normal across large areas of the western Canadian interior, leading to widespread impacts on the forests of this region. This poses a major concern for the future, given climate change projections for continued warming and drying. We conducted tree-ring analysis in 75 pure stands of white spruce (Picea glauca) across Alberta and west-central Saskatchewan to examine the effects of recent climatic drying on the growth of this important boreal tree species. Allometric equations were used to calculate annual growth in aboveground tree biomass (GBM ) from ring width measurements. Results showed an increasing trend in GBM from the 1960s to the 1990s, followed by a sharp decline during the severe drought of 2001-2002. Of the 75 stands, only 18 recovered sufficiently to cause an increase in mean GBM from the predrought decade of 1991-2000 to the subsequent decade of 2001-2010. The remaining 57 stands exhibited a decline in mean GBM between these decades. Climatic drying was a major cause of the growth decline, as shown by the significant stand-level relationship between percentage change in decadal mean GBM and the change in decadal mean values of a climate moisture index from 1991-2000 to 2001-2010. Subsequent analyses of boreal stands sampled across Alberta during 2015 revealed that white spruce growth had declined even further as drought conditions intensified during 2014-2015. Overall, there was a 38% decrease in mean GBM between 1997 and 2015, but surprisingly, the percentage decrease was not significantly different for young, productive stands compared with older, less productive stands. Thus, stand ageing cannot explain the observed decline in white spruce growth during the past quarter century, suggesting that these forests are at risk if the trend towards more frequent, severe drought continues in the region.


Assuntos
Mudança Climática , Secas , Florestas , Picea/crescimento & desenvolvimento , Alberta , Biomassa , Saskatchewan , Árvores/crescimento & desenvolvimento
15.
Plant J ; 81(1): 68-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25302566

RESUMO

Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a ß-glucosidase gene, Pgßglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgßglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgßGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgßglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgßglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgßglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgßglu-1 transcript expression, PgßGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.


Assuntos
Resistência à Doença/genética , Picea/fisiologia , Proteínas de Plantas/fisiologia , beta-Glucosidase/fisiologia , Acetofenonas/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mariposas/fisiologia , Picea/enzimologia , Picea/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
16.
New Phytol ; 210(1): 240-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26619072

RESUMO

Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits.


Assuntos
Redes Reguladoras de Genes , Estudos de Associação Genética , Picea/genética , Madeira/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos , Característica Quantitativa Herdável , Xilema/genética
17.
New Phytol ; 211(1): 159-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26891783

RESUMO

Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the case of conifer trees. We developed an RNA sequencing (RNA-seq)-based approach for both expression-quantitative trait locus (eQTL) mapping and the detection of cis-acting (allele-specific) vs trans-acting (non-allele-specific) eQTLs. This method can be potentially applied to many conifers. We used haploid and diploid meiotic seed tissues of a single self-fertilized white spruce (Picea glauca) individual to dissect eQTLs according to linkage and allele specificity. The genetic architecture of local eQTLs linked to the expressed genes was particularly complex, consisting of cis-acting, trans-acting and, surprisingly, compensatory cis-trans effects. These compensatory effects influence expression in opposite directions and are neutral when combined in homozygotes. Nearly half of local eQTLs were under compensation, indicating that close linkage between compensatory cis-trans factors is common in spruce. Compensated genes were overrepresented in developmental and cell organization functions. Our haploid-diploid eQTL analysis in spruce revealed that compensatory cis-trans eQTLs segregate within populations and evolve in close genetic linkage.


Assuntos
Diploide , Haploidia , Picea/genética , Locos de Características Quantitativas , Alelos , Regulação da Expressão Gênica de Plantas , Ligação Genética , Genética Populacional , Autofertilização , Análise de Sequência de RNA
18.
Ann Bot ; 117(4): 551-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26975315

RESUMO

BACKGROUND AND AIMS: Trees invest in both primary (e.g. height) and secondary (e.g. diameter) growth. The trade-off between these investments varies between species and changes with the tree growing environment. To better establish this trade-off, readily available allometric exponents relating height to diameter at breast height (γ(h,dbh)) and stem volume to diameter at breast height (α(v,dbh)) were simultaneously studied. METHODS: Allometric exponents α(v,dbh) and γ(h,dbh) were obtained from 8893 individual tree stem analyses from two broadleaved species (Betula papyrifera, Populus tremuloides) and four conifers (Picea glauca, Picea mariana, Pinus banksiana, Abies balsamea) in the temperate and boreal forests of the province of Quebec, Canada. α(v,dbh) and γ(h,dbh) were related to tree age, stand density index (SDI), and mean temperature (TGS) and total precipitation (PGS) of the growing season. KEY RESULTS: α(v,dbh) and γ(h,dbh) were found to be invariant with PGS and positively related to SDI and TGS for all species except Pinus banksiana. The parameter values associated with SDI and TGS were of higher value for conifers than for broadleaved species. CONCLUSIONS: This suggests that conifers and broadleaved species have different growth patterns. This could be explained by their different mode of development, the conifer species having a stronger apical dominance than broadleaved species. Such results could be further considered in allocation studies to quantify future carbon stocks in managed forests.


Assuntos
Clima , Árvores/crescimento & desenvolvimento , Geografia , Modelos Teóricos , Estações do Ano , Especificidade da Espécie , Temperatura , Estados Unidos
19.
Ecol Appl ; 26(7): 2001-2020, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755740

RESUMO

Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. We use tree-ring isotope chronologies (δ13 C and δ18 O) from live and dead trees from four locations in south-central Alaska, USA, to test whether white spruce trees killed by recent spruce beetle (Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites, we found greater correlations between the δ13 C and δ18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ18 O was measured, δ18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska.


Assuntos
Carbono/química , Besouros/fisiologia , Secas , Oxigênio/química , Picea/química , Picea/fisiologia , Alaska , Animais , Carbono/metabolismo , Isótopos de Carbono , Oxigênio/metabolismo , Isótopos de Oxigênio , Crescimento Demográfico , Fatores de Tempo
20.
New Phytol ; 207(1): 172-187, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25728802

RESUMO

Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Picea/genética , Transcriptoma/genética , Parede Celular/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genes de Plantas , Lignina/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Propanóis/metabolismo , Estações do Ano , Especificidade da Espécie , Fatores de Tempo , Madeira/crescimento & desenvolvimento , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA