Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(23-24): 1713-1734, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184221

RESUMO

Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Melanócitos/citologia , Transdução de Sinais/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Análise de Célula Única
2.
Prep Biochem Biotechnol ; : 1-12, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289777

RESUMO

Today, the use of nutrients derived from natural bioactive compounds application in the food, pharmaceutical, and cosmetic industries is on the increase. This paper aimed to evaluate the amino acids profile (essential and non-essential) and pigments composition (chlorophyll a, carotenoids, and phycocyanin) of Arthrospira platensis (a blue-green microalga) cultivation in a flat-plate photobioreactor under various types of light-emitting diodes (red: 620-680 nm, white: 380-780 nm, yellow: 570-600nm, blue: 445-480 nm). The maximum biomass concentration (604.96 mg L-1) occurred when the red LED was applied for cultivation, and the minimum biomass concentration (279.39 mg L-1) was obtained under blue LED. The sequence of pigments and amino acids concentrations (mg L-1culture volume) was approximately in accordance with the biomass productivity. It means the red light produces the maximum concentration of pigments (chlorophyll a: 5.42, carotenoids: 2.92, phycocyanin: 67.54 mg L-1) and amino acids (essential amino acids: 110.47, nonessential amino acids: 179.10 mg L-1). Nevertheless, when these values were measured in mg per g of dry weight, the utmost contents were observed in microalgal products cultivated under blue LED. These consequences are due to the highest cell productivity and the most extended length of cells that occurred under red and blue LEDs, respectively.

3.
Biotechnol Bioeng ; 117(10): 3081-3093, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598486

RESUMO

This study describes the response of Arthrospira platensis to a variety of temperature conditions as reflected in variations of photosynthetic parameters, pigmentation, and biomass productivity in indoor photobioreactor (PBR) cultivations. These experiments are designed to better understand the impact of temperature, seasonal variations, and acclimation effects on outdoor biomass production. The irradiance level and temperature range (20-39°C) are chosen to enable modeling of semi-continuous operation of large-scale outdoor PBR deployments. Overall, the cultivations are quite stable with some pigment-related instabilities after prolonged high-temperature exposure. Changes in productivity with temperature, as reflected in measured photosynthetic parameters, are immediate and mainly attributable to the temperature dependence of the photosaturation parameter, a secondary factor being variation in pigment content on a longer time scale corresponding to turnover of the culture population. Though pigment changes are not accompanied by significant changes in productivity, prolonged exposure at 35°C and above yields a clear degradation in performance. Productivities in a semi-continuous operation are quantitatively reproduced with a productivity model incorporating photosynthetic parameters measured herein. This study confirms the importance of temperature for biomass and pigment production in Arthrospira cultivations and provides a basis for risk assessments related to temperature mitigation for large-scale outdoor cultivations.


Assuntos
Clorofila/metabolismo , Fotobiorreatores/normas , Fotossíntese , Ficocianina/metabolismo , Spirulina/metabolismo , Temperatura , Biomassa
4.
Appl Microbiol Biotechnol ; 104(18): 7879-7899, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32719911

RESUMO

FvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (H2O2, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions. Expression of selected biosynthetic genes both in the fumonisin (fum1, fum8) and the carotenoid (carRA, carB) pathways were down-regulated in the ΔFvatfA strain resulting in defected fumonisin production and considerably decreased carotenoid yields. The expression of bik1, encoding the polyketide synthase needed in bikaverin biosynthesis, was not up-regulated by the deletion of FvatfA meanwhile the ΔFvatfA strain produced approximately ten times more bikaverin than the wild-type or the genetically complemented strains. The abolishment of fumonisin production of the ΔFvatfA strain may lead to the development of new-type, biology-based mycotoxin control strategies. The novel information gained on the regulation of pigment production by this fungus can be interesting for experts working on new, Fusarium-based biomass and pigment production technologies. Key points • FvatfA regulates vegetative and invasive growths of F. verticillioides. • FvatfA also orchestrates oxidative and cell wall integrity stress defenses. • The ΔFvatfA mutant was deficient in fumonisin production. • FvatfA deletion resulted in decreased carotenoid and increased bikaverin yields.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio , Zea mays/metabolismo
5.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987999

RESUMO

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Assuntos
Elementos de DNA Transponíveis , Pigmentos Biológicos , Elementos de DNA Transponíveis/genética , Pigmentos Biológicos/metabolismo , Mutagênese Insercional/métodos , Vetores Genéticos/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Triptofano/metabolismo , Endófitos/genética , Endófitos/metabolismo
6.
Diagn Microbiol Infect Dis ; 109(1): 116212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387214

RESUMO

Pseudomonas aeruginosa, one of the most notorious organisms, causes fatal diseases like-, meningitis, pneumonia as well as worsens the prognosis of cystic fibrosis patients. It is also multi-drug resistant and resists a wide range of antibiotics. Attempts have been made to reduce its virulence/pathogenic potential using a number of organic compounds. For this purpose, the Quorum sensing (QS) system of P. aeruginosa was targeted, which regulates its virulence. Pseudomonas Quinolone System (PQS), one of the four quorum sensing systems, producing pyocyanin pigment was chosen. 2-heptyl-3-hydroxy-4-quinolone (HHQ) is a ligand which binds to PQS protein is responsible for pyocyanin pigment production. Attempts were made to find a compound analogous to HHQ which could bind to PQS active site and inhibit the pigment formation. In-silico analysis was performed to estimate possible interactions and to find/predict the possible PQS inhibitors.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Percepção de Quorum/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Piocianina/metabolismo , Quinolonas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/metabolismo
7.
J Fungi (Basel) ; 9(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37755017

RESUMO

Talaromyces albobiverticillius, a prominent pathogen responsible for pomegranate pulp rot disease, inflicts significant damage on Punica granatum L. Besides its pathogenicity, this fungus possesses the potential to produce substantial amounts of red pigments, making it promising for industrial applications. This study presents the genome annotation of T. albobiverticillius field strain Tp-2, isolated from pomegranates. The genome assembly, generated through a combination of Oxford Nanopore and Illumina sequencing reads, yielded a high-quality assembly with 14 contigs, featuring an N50 length of 4,594,200 bp. The complete genome of strain Tp-2 spans 38,354,882 bp, with a GC content of 45.78%. Importantly, the assembly exhibits remarkable integrity, with 98.3% of complete Benchmarking Universal Single-Copy Orthologs validating genome completeness. Genome prediction analysis reveals the presence of 10,380 protein-coding genes. To our knowledge, this study is the first report on the genome sequence of T. albobiverticillius, offering valuable insights into its genetic variation and molecular mechanisms of pigment production.

8.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678434

RESUMO

Mycobacterium kansasii (Mk) causes opportunistic pulmonary infections with tuberculosis-like features. The bacterium is well known for its photochromogenicity, i.e., the production of carotenoid pigments in response to light. The genetics defining the photochromogenic phenotype of Mk has not been investigated and defined pigmentation mutants to facilitate studies on the role of carotenes in the bacterium's biology are not available thus far. In this study, we set out to identify genetic determinants involved in Mk photochromogenicity. We screened a library of ~150,000 transposon mutants for colonies with pigmentation abnormalities. The screen rendered a collection of ~200 mutants. Each of these mutants could be assigned to one of four distinct phenotypic groups. The insertion sites in the mutant collection clustered in three chromosomal regions. A combination of phenotypic analysis, sequence bioinformatics, and gene expression studies linked these regions to carotene biosynthesis, carotene degradation, and monounsaturated fatty acid biosynthesis. Furthermore, introduction of the identified carotenoid biosynthetic gene cluster into non-pigmented Mycobacterium smegmatis endowed the bacterium with photochromogenicity. The studies also led to identification of MarR-type and TetR/AcrR-type regulators controlling photochromogenicity and carotenoid breakdown, respectively. Lastly, the work presented also provides a first insight into the Mk transcriptome changes in response to light.

9.
Biology (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671700

RESUMO

Skin color is an important phenotypic feature of vertebrate fitness under natural conditions. Celestial goldfish, a common goldfish breed in China, mainly shows three kinds of skin colors including white, yellow and brown. However, the molecular genetic basis of this phenotype is still unclear. In this study, high-throughput sequencing was carried out on the back skin tissues of celestial goldfish with different skin colors. About 58.46 Gb of original data were generated, filtered and blasted, and 74,297 mRNAs were obtained according to the reference transcriptome. A total of 4653 differentially expressed genes were screened out among the brown, yellow and white groups, and the expression of melanogenesis related genes in brown goldfish was significantly higher than the other two groups. There are 19 common differentially expressed genes among three groups, of which eight genes are related to pigment production, including tyrp1a, slc2a11b, mlana, gch2, loc113060382, loc113079820, loc113068772 and loc113059134. RT-qPCR verified that the expression patterns of randomly selected differentially expressed transcripts were highly consistent with those obtained by RNA sequencing. GO and KEGG annotation revealed that these differentially expressed genes were mostly enriched in pathways of the production of pigment, including melanogenesis, tyrosine metabolism, Wnt signaling pathway, MAPK signaling pathway etc. These results indicated that the external characteristics of goldfish are consistent with the analysis results at transcriptome level. The results of this study will lay a foundation for further study on the expression characteristics and gene network analysis of pigment related genes.

10.
Eur J Med Res ; 27(1): 120, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842687

RESUMO

Pseudomonas aeruginosa is an adaptable bacterial pathogen that infects a variety of organs, including the respiratory tract, vascular system, urinary tract, and central nervous system, causing significant morbidity and mortality. As the primary goal of this study, we wanted to determine how pigment color production differed between clinical strains of P. aeruginosa, and whether or not that variation was associated with multidrug resistance or the ability to form biofilms. We screened in total 30.1% of yellow, 39.8% green and 30.1% of no pigment-producing P. aeruginosa strains from a total of 143 various clinical isolates. Yellow pigment-producing strains presented significant resistance to antibiotics groups, including ß-lactam (91.5%), aminoglycosides (70.5%), and carbapenems (51.9%) compared to green and non-pigmented strains. Notably, 16.3% of yellow pigment-producing strains were resistant to colistin which is used as a last-resort treatment for multidrug-resistant bacteria, whereas only 2.3% of non-pigmented and 1.8% of green pigmented strains were resistant to colistin. Aside from that, yellow pigment-producing strains were frequent producers of enzymes belonging to the lactamase family, including ESBL (55.6%), MBL (55.6%), and AmpC (50%). Compared to the green groups (7.14%) and non-pigmented groups (28.5%), they had a higher frequency of efflux positive groups (64.2%). Notably, when compared to non-pigmented groups, green pigment-producing strains also displayed antibiotic susceptibility behavior similar to yellow pigment-producing strains. The majority of yellow pigment-producing strains outperformed the green and non-pigmented strains in terms of MIC levels when compared to the other two groups of strains. Despite the fact that previous studies have demonstrated a direct correlation between multidrug resistance behaviors and biofilm production, no such statistically significant association between pigment and biofilm formation was found in our investigation. Our research has demonstrated that the correlation of bacterial pigments on their susceptibility to antimicrobial agents. Yellow pigment-producing P. aeruginosa strains posed a significant problem due to the lack of alternative agents against such transformed strains, which may be associated with the development of multidrug resistance.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , beta-Lactamases
11.
J Biotechnol ; 339: 81-92, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34364925

RESUMO

Pigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L-1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL-1) and ß-glucosidase activities (none to 6.44 IU. mL-1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L-1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source.


Assuntos
Actinobacteria , Fibras na Dieta , Bacteroidetes , Chromobacterium
12.
Saudi J Biol Sci ; 28(2): 1401-1416, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613070

RESUMO

Navicula incerta is a marine microalga distributed in Baja California, México, commonly used in aquaculture nutrition, and has been extended to human food, biomedical, and pharmaceutical industries due to its high biological activity. Therefore, the study aimed to optimize culture conditions to produce antioxidant pigments. A central composite experimental design and response surface methodology (RSM) was employed to analyze the best culture conditions. The medium (nitrogen-deficient concentrations), salinity (PSU = Practical Salinity Unity [g/kg]), age of culture (days), and solvent extraction (ethanol, methanol, and acetone) were the factors used for the experiment. Chlorophyll a (Chl a) and total carotenoids (T-Car), determined spectroscopically, were used as the response variables. The antioxidant capacity was evaluated by DPPH• and ABTS•+ radical inhibition, FRAP, and anti-hemolytic activity. According to the overlay plots, the optimum growth conditions for Chl a and T-Car production were the following conditions: medium = 0.44 mol·L-1 of NaNO3, salinity = 40 PSU, age of culture: 3.5 days, and solvent = methanol. The pigment extracts obtained in these optimized conditions had high antioxidant activity in ABTS•+ (86.2-92.1% of inhibition) and anti-hemolytic activity (81.8-96.7% of hemolysis inhibition). Low inhibition (33-35%) was observed in DPPH•. The highest value of FRAP (766.03 ± 16.62 µmol TE/g) was observed in the acetonic extract. The results demonstrated that RSM could obtain an extract with high antioxidant capacity with potential applications in the biomedical and pharmaceutical industry, which encourages the use of natural resources for chemoprevention of chronic-degenerative pathologies.

13.
Biotechnol Prog ; 35(1): e2738, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365243

RESUMO

Filamentous fungi have gained growing interest as sources of diverse pigmented secondary metabolites. Some specific polyketides from Ascomycetous species have demonstrated a wide range of industrial applications in food, cosmetic, textile, and in the design of pharmaceutical products. The formulation of recipes containing fungal polyketides has increased over recent years. Fusarium strains were proven useful to mankind in a variety of technologies. Nevertheless, there is still need of new isolates of Fusarium for use in emerging and already existing fields. In this article, we report the concomitant production of the bioactive red bikaverin along with two novel purple pigments by the phytopathogenic Fusarium oxysporum LCP531 strain isolated from soil. In literature, the production of purple pigment had only been described in cultures of Fusarium Fujikuroi, Fusarium verticillioides, and Fusarium graminearum. The production of these naphthoquinonic pigments, their distribution (either produced in mycelia or excreted in liquid medium) and their chemical profiles were investigated with respect to nutrient composition. The pigments were extracted by using a pressurized liquid extraction method, monitored by colorimetric analysis and characterized by HPLC-DAD chromatography. To our knowledge, this is the first report of these two novel wild-type purple naphtoquinones pigments along with bikaverin, where additionally, the culture conditions were put into perspective to optimize fermentation cultures and extraction process accordingly to the pigment/biomolecule desired. These colored naphthoquinones should be promising fungal functional compounds which could be expected to have a place of choice, along with other antibacterial, antifungal, antiviral, anticancer, and antineoplastic derivatives. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2738, 2019.


Assuntos
Fusarium/metabolismo , Naftoquinonas/química , Policetídeos/química , Xantonas/química , Proteínas Fúngicas/metabolismo , Naftoquinonas/isolamento & purificação , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
14.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095994

RESUMO

Protozoan predation is one of the main environmental factors constraining bacterial growth in aquatic environments, and thus has led to the evolution of a number of defence mechanisms that protect bacteria from predation. These mechanisms may also function as virulence factors in infection of animal and human hosts. Whole transcriptome shotgun sequencing of Vibrio cholerae biofilms during predation by the amoebae, Acanthamoeba castellanii, revealed that 131 transcripts were significantly differentially regulated when compared to the non-grazed control. Differentially regulated transcripts included those involved in biosynthetic and metabolic pathways. The transcripts of genes involved in tyrosine metabolism were down-regulated in the grazed population, which indicates that the tyrosine metabolic regulon may have a role in the response of V. cholerae biofilms to A. castellanii predation. Homogentisate 1, 2-dioxygenase (HGA) is the main intermediate of the normal L-tyrosine catabolic pathway which is known to auto-oxidize, leading to the formation of the pigment, pyomelanin. Indeed, a pigmented mutant, disrupted in hmgA, was more resistant to amoebae predation than the wild type. Increased grazing resistance was correlated with increased production of pyomelanin and thus reactive oxygen species (ROS), suggesting that ROS production is a defensive mechanism used by bacterial biofilms against predation by amoebae A. castellanii.


Assuntos
Acanthamoeba castellanii/microbiologia , Antiprotozoários/metabolismo , Biofilmes/crescimento & desenvolvimento , Melaninas/metabolismo , Vibrio cholerae/crescimento & desenvolvimento , Animais , Homogentisato 1,2-Dioxigenase/genética , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Vibrio cholerae/genética , Fatores de Virulência
15.
J Fungi (Basel) ; 3(3)2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29371553

RESUMO

Marine ecosystems cover about 70% of the planet surface and are still an underexploited source of useful metabolites. Among microbes, filamentous fungi are captivating organisms used for the production of many chemical classes of secondary metabolites bound to be used in various fields of industrial application. The present study was focused on the collection, isolation, screening and genotyping of pigmented filamentous fungi isolated from tropical marine environments around La Réunion Island, Indian Ocean. About 150 micromycetes were revived and isolated from 14 marine samples (sediments, living corals, coral rubble, sea water and hard substrates) collected in four different locations. Forty-two colored fungal isolates belonging to 16 families, 25 genera and 31 species were further studied depending on their ability to produce pigments and thus subjected to molecular identification. From gene sequence analysis, the most frequently identified colored fungi belong to the widespread Penicillium, Talaromyces and Aspergillus genera in the family Trichocomaceae (11 species), then followed by the family Hypocreaceae (three species). This study demonstrates that marine biotopes in La Réunion Island, Indian Ocean, from coral reefs to underwater slopes of this volcanic island, shelter numerous species of micromycetes, from common or uncommon genera. This unstudied biodiversity comes along with the ability for some fungal marine inhabitants, to produce a range of pigments and hues.

16.
AMB Express ; 6(1): 34, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27142994

RESUMO

A variety of mutants having different colony characteristics, morphology and soluble pigmentation were generated from Fusarium fujikuroi by exposure to UV radiation. Mutants were selected that formed dry, compact, small colonies with reddish-violet pigment on regeneration agar plates. The production of bikaverin by Mut-4 was examined in shake flasks in media with different nitrogen and carbon sources. The optimal C: N ratio for the maximal bikaverin production by Mut-4 was 150:1. It produced still higher bikaverin (6.3 g l(-1)) in a medium containing defatted cottonseed meal as nitrogen source, in combination with glucose. Bikaverin produced was extracted, purified and characterized by UV-visible and NMR spectroscopy. Bikaverin production in the present investigation was substantially higher than that reported by earlier investigators in submerged and solid-state fermentations.

17.
Methods Mol Biol ; 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27221340

RESUMO

The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA