Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731406

RESUMO

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Assuntos
Antocianinas , Quitosana , Fenóis , Vitis , Compostos Orgânicos Voláteis , Vinho , Antocianinas/análise , Quitosana/química , Vinho/análise , Vitis/química , Fenóis/análise , Compostos Orgânicos Voláteis/análise , Itália , Cromatografia Líquida de Alta Pressão
2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725210

RESUMO

There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.


Assuntos
Vitis , Vinho , Vinho/análise , Saccharomyces cerevisiae , Fermentação , Cromatografia Gasosa-Espectrometria de Massas
3.
Anal Bioanal Chem ; 415(20): 5035-5047, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37308618

RESUMO

γ-Nonalactone is a linear aliphatic lactone ubiquitous in wine, associated with coconut, sweet, and stone fruit aroma descriptors. Little research has been conducted looking at the importance of this compound to New Zealand (NZ) wine aroma. 2H213C2-γ-Nonalactone, a novel isotopologue of γ-nonalactone, was synthesised in this work for use in a stable isotope dilution assay (SIDA) for quantification of γ-nonalactone in NZ Pinot noir wines for the first time. Synthesis was carried out using heptaldehyde as the starting material, and 13C atoms and 2H atoms were introduced via Wittig olefination and deuterogenation steps, respectively. The suitability of this compound as an internal standard was demonstrated by spiking model wine at normal and elevated conditions during sample preparation, with subsequent analysis via mass spectrometry showing stability of 2H213C2-γ-nonalactone. A model wine calibration, with concentrations of γ-nonalactone from 0 to 100 µg L-1, was shown to have excellent linearity (R2 > 0.99), reproducibility (0.72%), and repeatability (0.38%). Twelve NZ Pinot noir wines, representative of a range of NZ Pinot noir-producing regions, prices, and vintages, were analysed by solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS). The concentrations of γ-nonalactone ranged from 8.3 to 22.5 µg L-1, the latter of which was close to the odour detection threshold of this compound. These findings provide a basis for further research into γ-nonalactone and its impact on NZ Pinot noir aroma and provide a robust method for the quantification of this compound in Pinot noir.


Assuntos
Vitis , Vinho , Vitis/química , Cromatografia Gasosa-Espectrometria de Massas , Nova Zelândia , Reprodutibilidade dos Testes , Vinho/análise , Isótopos/análise
4.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500422

RESUMO

It has been reported that polysaccharides in wine can interact with tannins and other wine components and modify the sensory properties of the wine. Unfortunately, the contribution of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure and varied composition. In addition, the composition and molecular structure of polysaccharides in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L) fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied using size exclusion chromatography, UV-Vis, FT-IR, matrix-assisted laser desorption/ionization-high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR analysis showed that PNWPs were acidic polysaccharides with α- and ß-type glycosidic linkages. PNWP-L and PNWP-H had different α- and ß-type glycosidic linkage structures. FT-IR showed stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is needed to understand the impacts of these fractions on wine organoleptic properties.


Assuntos
Galactose , Vinho , Galactose/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Vinho/análise , Polissacarídeos/química , Taninos/química , Arabinose/análise
5.
J Sci Food Agric ; 102(2): 664-672, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34165824

RESUMO

BACKGROUND: The use of indigenous selected starters in winemaking is gaining interest due to certain advantages for the sensory quality of the wine. The present work shows the results of a laboratory experiment in which the influence of selected indigenous yeasts on the colour characteristics of Pinot Noir was studied with the use of high hydroxycinnamate decarboxylase activity yeasts. Pichia guilliermondii ZIM624 and Wickerhamomyces anomalus S138 yeasts were used in sequential fermentation with two strains of Saccharomyces cerevisiae, the native ZIM2180 strain and commercial Fermol Premier Cru (FPC). RESULTS: In co-inoculation fermentations, non-Saccharomyces yeasts decreased colour intensity (on average by 25.5%). In wines fermented with ZIM624, the concentration of vinylphenolic pyranoanthocyanins increased (average concentration 1.5 mg L-1 ). However, vitisin concentration was significantly higher in S138 + FPC fermentation (1.3 mg L-1 and an average of 0.9 mg L-1 , respectively). Pinot Noir wines fermented with only ZIM2180 and sequential inoculation of ZIM624 + ZIM2180 resulted in significantly higher colour intensity (6.1 ± 0.0 AU and 4.4 ± 0.0 AU, respectively) and lower wine hue parameters compared to other wines. Sensory evaluation also showed that both wines had the highest perceived colour intensity and purple colour suggesting improvement in wine quality parameters. CONCLUSIONS: The results confirmed that selected indigenous starters made out of Saccharomyces and non-Saccharomyces yeasts can alter Pinot Noir wine colour parameters and improve wine colour properties. Those yeasts properties should be investigated prior to the development of new commercial starters but also be considered in large scale spontaneous fermentations of low colour intensity red wines like Pinot Noir. © 2021 Society of Chemical Industry.


Assuntos
Vitis/microbiologia , Vinho/análise , Leveduras/metabolismo , Cor , Fermentação , Microbiologia de Alimentos , Vitis/metabolismo , Vinho/microbiologia , Leveduras/classificação
6.
Plant J ; 101(5): 1234-1248, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31663642

RESUMO

Bunch rot caused by Botrytis cinerea infections is a notorious problem in grapevine cultivation. To produce high quality fruits, grapevine plants are treated with fungicides, which is cost intensive and harmful to the environment. Conversely, loose cluster bunches show a considerably enhanced physical resilience to bunch diseases. With the aim to identify genetic determinants that modulate the development of bunch architecture, we have compared loose and compact 'Pinot noir' clones. Loose cluster architecture was found to be correlated with increased berry size, elongated rachis and elongated pedicels. Using transcriptome analysis in combination with whole genome sequencing, we have identified a growth-regulating factor gene, VvGRF4, upregulated and harbours heterozygous mutations in the loose cluster clones. At late stages of inflorescence development, the mRNA pools of loose cluster clones contain predominantly mRNAs derived from the mutated alleles, which are resistant to miR396 degradation. Expression of the VvGRF4 gene and its mutated variants in Arabidopsis demonstrates that it promotes pedicel elongation. Taken together, VvGRF4 modulates bunch architecture in grapevine 'Pinot noir' clones. This trait can be introduced into other cultivars using marker-assisted breeding or CRISPR-Cas9 technology. Related growth-regulating factors or other genes of the same pathway may have similar functions.


Assuntos
Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Doenças das Plantas/imunologia , Vitis/genética , Alelos , Sítios de Ligação , Frutas , Perfilação da Expressão Gênica , Inflorescência/genética , Inflorescência/imunologia , Inflorescência/microbiologia , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Vitis/imunologia , Vitis/microbiologia
7.
BMC Plant Biol ; 21(1): 327, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233614

RESUMO

BACKGROUND: Grapevine cultivars of the Pinot family represent clonally propagated mutants with major phenotypic and physiological differences, such as different colour or shifted ripening time, as well as changes in important viticultural traits. Specifically, the cultivars 'Pinot Noir' (PN) and 'Pinot Noir Precoce' (PNP, early ripening) flower at the same time, but vary in the beginning of berry ripening (veraison) and, consequently, harvest time. In addition to genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible regulatory genes that affect the timing of veraison onset, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and over two separate years. RESULTS: The difference in the duration of berry formation between PN and PNP was quantified to be approximately two weeks under the growth conditions applied, using plant material with a proven PN and PNP clonal relationship. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the timing of veraison onset. Functional annotation of these DEGs fit to observed phenotypic and physiological changes during berry development. In total, we observed 3,342 DEGs in 2014 and 2,745 DEGs in 2017 between PN and PNP, with 1,923 DEGs across both years. Among these, 388 DEGs were identified as veraison-specific and 12 were considered as berry ripening time regulatory candidates. The expression profiles revealed two candidate genes for ripening time control which we designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively). These genes likely contribute the phenotypic differences observed between PN and PNP. CONCLUSIONS: Many of the 1,923 DEGs show highly similar expression profiles in both cultivars if the patterns are aligned according to developmental stage. In our work, putative genes differentially expressed between PNP and PN which could control ripening time as well as veraison-specific genes were identified. We point out connections of these genes to molecular events during berry development and discuss potential candidate genes which may control ripening time. Two of these candidates were observed to be differentially expressed in the early berry development phase. Several down-regulated genes during berry ripening are annotated as auxin response factors / ARFs. Conceivably, general changes in auxin signaling may cause the earlier ripening phenotype of PNP.


Assuntos
Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vitis/crescimento & desenvolvimento , Vitis/genética , Análise por Conglomerados , Flores/genética , Flores/fisiologia , Frutas/genética , Fenótipo , Análise de Componente Principal , Fatores de Tempo
8.
J Environ Manage ; 278(Pt 1): 111453, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220511

RESUMO

I) BACKGROUND: Carbon footprint studies of locally produced and consumed wine are missing. II) PURPOSE(S): The objective of the present study was to identify management strategies and carbon reduction potentials for a sustainable wine production based on the carbon footprint and the water footprint of locally grown grapes and wine locally produced and consumed. III) METHODS: Two wineries (A and B) were investigated, both of which grow the same white (Riesling) and the same red grape (Pinot Noir/Spätburgunder) on the same rootstock in the Rhine river valley of Germany. The study was based on PAS 2050-1 (BSI) and comprised 99% primary data derived from historical farm records. System boundaries ranged from planting of the grapevines to eventual disposal of a typical 0.75 L glass bottle, which served as the functional unit (FU). IV) RESULTS: The product carbon footprint (PCF) was 1.91 ±â€¯0.3 kg CO2eq/bottle (A) or 1.69 ±â€¯0.3 (B) kg CO2eq/bottle of white wine and 1.86 ±â€¯0.3 kg CO2eq/bottle of red wine for both wineries. These results were attributed to the consumer behaviour (22-30%), followed by the use and production of glass bottles (20-27%). Grapevine cultivation amounted to 0.3-0.4 kg CO2eq/bottle; grape processing caused ca. 0.05-0.06 kg CO2eq/bottle, packaging 0.5-0.6 kg CO2eq/bottle, distribution 0.2-0.4 kg CO2eq/bottle, while use and disposal of the glass bottles emitted 0.5-0.6 kg CO2eq/bottle. The plant protection chemicals caused only ca. 1.4% and organic fertilizer ca. 2.8% of the product carbon footprint (PCF). Red and white wine appeared commensurate in their PCF within 3-8% in both vineyards. The water footprint was ca. 5.7 ±â€¯0.6 (A) and 2.1 ±â€¯0.4 (B) L blue water/bottle for both red and white wine. V) DISCUSSION: The results are discussed with higher carbon footprint values for wine from overseas. We have identified the following reduction potentials such as the following management strategies: VI) RECOMMENDATIONS: a) reduction of fossil fuels for gas heating of the premises and for farm vehicles, b) the use of lightweight glass bottles and c) alternative means of transport for the consumer purchase at the winery when using a private vehicle.


Assuntos
Vinho , Carbono , Pegada de Carbono , Fazendas , Alemanha , Vinho/análise
9.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443337

RESUMO

Real-time process metrics are standard for the majority of fermentation-based industries but have not been widely adopted by the wine industry. In this study, replicate fermentations were conducted with temperature as the main process parameter and assessed via in-line Oxidation Reduction Potential (ORP) probes and at-line profiling of phenolics compounds by UV-Vis spectroscopy. The California and Oregon vineyards used in this study displayed consistent vinification outcomes over five vintages and are representative of sites producing faster- and slower-fermenting musts. The selected sites have been previously characterized by fermentation kinetics, elemental profile, phenolics, and sensory analysis. ORP probes were integrated into individual fermentors to record how ORP changed throughout the fermentation process. The ORP profiles generally followed expected trends with deviations revealing previously undetectable process differences between sites and replicates. Site-specific differences were also observed in phenolic and anthocyanin extraction. Elemental composition was also analyzed for each vineyard, revealing distinctive profiles that correlated with the fermentation kinetics and may influence the redox status of these wines. The rapid ORP responses observed related to winemaking decisions and yeast activity suggest ORP is a useful process parameter that should be tracked in addition to Brix, temperature, and phenolics extraction for monitoring fermentations.


Assuntos
Fermentação , Espectrofotometria Ultravioleta , Vinho/microbiologia , Oxirredução , Vitis/química , Vitis/microbiologia , Vinho/análise
10.
J Sci Food Agric ; 101(3): 947-951, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32767381

RESUMO

BACKGROUND: New Zealand Pinot noir is gaining increasing attention both in New Zealand and internationally, becoming the second largest grape variety for both plantings and export. Despite the growing furore around this variety, the current coverage of the volatile chemical profile remains limited, with a lack of information on the fermentative sulfur compounds content in New Zealand Pinot noir wines. RESULTS: Thirty-five Pinot noir wines from three different vintages (i.e. 2016, 2017 and 2018) form five different grape growing regions were analysed for their fermentative sulfur compounds contents. Six fermentative sulfur compounds (i.e. methanethiol, ethanethiol, dimethyl sulfide, carbon disulfide, methionol and benzothiazol) were detected and measured for the first time in New Zealand Pinot noir wines. Their concentrations were compared against previously measured Pinot noir wines from other countries, and some preliminary evidence about inter-regional and ageing effects was obtained. CONCLUSION: The present study reports the first survey of the inter-regional differences in fermentative sulfur compounds contents in 35 New Zealand Pinot noir wines. Preliminary inter-regional and vintage trends prompt further research on the role of these molecules on this wine variety. © 2020 Society of Chemical Industry.


Assuntos
Compostos de Enxofre/química , Vitis/química , Vinho/análise , Fermentação , Frutas/química , Frutas/classificação , Nova Zelândia , Vitis/classificação , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA