Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 38(4): e14233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38155511

RESUMO

Conservation translocations are becoming common conservation practice, so there is an increasing need to understand the drivers of plant translocation performance through reviews of cases at global and regional levels. The establishment of the Italian Database of Plant Translocation (IDPlanT) provides the opportunity to review the techniques used in 186 plant translocation cases performed in the last 50 years in the heart of the Mediterranean Biodiversity Hotspot. We described techniques and information available in IDPlanT and used these data to identify drivers of translocation outcomes. We tested the effect of 15 variables on survival of translocated propagules as of the last monitoring date with binomial logistic mixed-effect models. Eleven variables significantly affected survival of transplants: life form, site protection, material source, number of source populations, propagation methods, propagule life stage, planting methods, habitat suitability assessment, site preparation, aftercare, and costs. The integration of vegetation studies in the selection of suitable planting sites significantly increased the success of translocation efforts. Although posttranslocation watering had a generally positive effect on translocation outcome, other aftercare techniques did not always increase transplant survival. Finally, we found that how funds were spent appeared to be more important than the actual amount spent. Plant translocations in Italy and in the Mediterranean area should account for the complexity of speciation, gene flow, and plant migrations that has led to local adaptations and has important implications for the choice and constitution of source material.


Mejores prácticas, errores y perspectivas tras medio siglo de reubicaciones botánicas en Italia Resumen Las reubicaciones son una práctica cada vez más común en la conservación, por lo que hay una necesidad creciente por entender los factores del desempeño de las reubicaciones botánicas por medio de la revisión de casos regionales y globales. La creación de la Italian Database of Plant Translocation (IDPlanT) proporciona una oportunidad para revisar las técnicas usadas para los casos de reubicación de 186 plantas realizados durante los últimos cincuenta años en el centro del punto caliente de biodiversidad mediterránea. Describimos las técnicas y la información disponible en IDPlanT y usamos estos datos para identificar los factores involucrados en los resultados de las reubicaciones. Usamos modelos logísticos binomiales de efectos mixtos para analizar el efecto de 15 variables sobre la supervivencia de los propágulos reubicados a partir de la última fecha de monitoreo. Once de las variables afectaron de manera significativa la supervivencia de las plantas: forma de vida, protección del sitio, fuente de materiales, cantidad de poblaciones originarias, método de propagación, etapa de vida del propágulo, método de siembra, evaluación de idoneidad del hábitat, preparación del sitio, cuidados posteriores y costos. La integración de los estudios botánicos a la selección de los sitios idóneos para plantar aumentó el éxito de los esfuerzos de reubicación. Aunque el riego posterior a la reubicación tuvo un efecto positivo general sobre el resultado, las otras técnicas de cuidado posterior no siempre incrementaron la supervivencia de la planta reubicada. Por último, descubrimos que parece ser más importante cómo se utilizan los fondos que la cantidad actual empleada. Las reubicaciones botánicas en Italia y en el área del Mediterráneo deben considerar lo complejo de la especiación, el flujo génico y la migración botánica que han derivado en adaptaciones locales y que han tenido implicaciones importantes para la elección y constitución del material de origen.


Assuntos
Conservação dos Recursos Naturais , Itália , Conservação dos Recursos Naturais/métodos , Plantas/genética , Biodiversidade , Ecossistema
2.
J Environ Manage ; 302(Pt B): 114064, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800770

RESUMO

Mitigation translocations are increasingly used worldwide in response to land planning pressures. The quality of translocation protocols and their adjustment to the ecological traits of the translocated populations are crucial to optimise translocation success. We studied the quality of translocation protocols presented in derogation requests, a mandatory step in France to translocate a protected plant species. We analysed 103 translocation proposals for 93 different species in 92 files examined between 2018 and 2020. After tracing the history of the place of translocations in legal procedures in France, we assessed each translocation proposal according to an evaluation grid, which involved the quantity and quality of information on plant species and translocation sites in the files and the quality of translocation protocols. We have shown that the translocation protocols are of low quality, with a lot of missing information. The biology and ecology of the species suggested for translocation are not sufficiently known, nor are the ecological characteristics of the host sites. Derogation requests that received a favourable opinion from the assessment body are more likely to propose a protected host site and post-translocation monitoring. We believe that, to optimise their outcome, mitigation translocations need to be improved upstream, with more detailed protocols and better species knowledge. We highly recommend following the same guidelines for mitigation translocations as for conservation translocations.


Assuntos
Conservação dos Recursos Naturais , Plantas , França
3.
Mol Ecol ; 30(12): 2756-2771, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890338

RESUMO

Assisted gene flow by plant translocations is increasingly implemented for restoring populations of critically endangered species. The success in restoring genetically healthy populations may depend on translocation design, in particular the choice of the source populations. Highly clonal populations may show low genetic diversity despite large census sizes, and disrupted and geitonogamous pollination may result in selfing and inbreeding issues in the offspring intended for translocation. We carried out a genetic monitoring of translocated populations of the clonal Dianthus deltoides using 14 microsatellite markers and quantified fitness traits over two generations (transplants, F1 seed progeny and newly established individuals). Inbreeding levels were higher in the offspring used as transplants than in the adult generation of the source populations, as a result of high clonality and pollination disruption leading to self-pollination. The F1 generation in translocated populations showed high genetic diversity maintained across generations, diminished inbreeding levels, low genetic differentiation, pollen flow and genetic mixing between the four sources. New individuals were established from seed germination. Fitness patterns were a combination of inbreeding depression in inbred transplants and F1 progeny, heterosis in admixed F1 progeny, source population adaptive capacities, phenotypic plasticity, maternal effects and site environmental specificities. The strategy in the translocation design to mix several local sources, combined with large founding population sizes and ecological management has proved success in initiating the processes leading to the establishment of genetically healthy populations, even when source populations are highly clonal with low genetic diversity leading to inbreeding issues in the transplants.


Assuntos
Pool Gênico , Endogamia , Fluxo Gênico , Variação Genética , Humanos , Polinização
4.
Mol Ecol ; 29(21): 4040-4058, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654225

RESUMO

Plant translocations allow the restoration of genetic diversity in inbred and depauperate populations and help to prevent the extinction of critically endangered species. However, the successes of plant translocations in restoring genetically viable populations and the possible associated key factors are still insufficiently evaluated. To fill this gap, we carried out a thorough genetic monitoring of three populations of Arnica montana that were created or reinforced by the translocation of plants obtained from seeds of two large natural source populations from southern Belgium. We genotyped nine microsatellite markers and measured fitness quantitative traits over two generations (transplants, F1 seed progeny and newly established F1 juveniles). Two years after translocation, the genetic restoration had been effective, with high genetic diversity and low genetic differentiation across generations, extensive contemporary pollen flow, admixture between seed sources in the F1 generation and recruitment of new individuals from seeds. We detected site, seed source and maternal plant effects on plant fitness. The results also suggest that phenotypic plasticity may favour short-term individual survival and long-term adaptive capacity and enhance the evolutionary resilience of the populations to changing environmental conditions. We found no sign of heterosis or outbreeding depression at early life stages in the F1 generation. Our findings emphasize the importance of the translocation design (700 transplants of mixed sources, planted at high density) as well as the preparatory site management for the successful outcome of the translocations, which maximized flowering, random mating, and recruitment from seeds in the first years after translocation.


Assuntos
Vigor Híbrido , Plantas , Animais , Bélgica , Espécies em Perigo de Extinção , Variação Genética , Fenótipo , Sementes/genética
5.
Plant Biol (Stuttg) ; 23(1): 193-204, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32991026

RESUMO

Many critically endangered plant species exist in small, genetically depauperate or inbred populations, making assisted gene flow interventions necessary for long-term population viability. However, before such interventions are implemented, conservation practitioners must consider the genetic and demographic status of extant populations, which are strongly affected by species' life-history traits. In northwestern Europe, Juniperus communis, a dioecious, wind-pollinated and bird-dispersed gymnosperm, has been declining for the past century and largely exists in small, isolated and senescent populations. To provide useful recommendations for a recovery plan involving translocation of plants, we investigated genetic diversity and structure of populations in Belgium using four microsatellite and five plastid single-nucleotide polymorphism (SNP) markers. We detected no clonality in the populations, suggesting predominantly sexual reproduction. Populations exhibited high genetic diversity (He  = 0.367-0.563) and low to moderate genetic differentiation (FST  ≤ 0.133), with no clear geographic structure. Highly positive inbreeding coefficients (FIS  = 0.221-0.507) were explained by null alleles, population substructuring and biparental inbreeding. No isolation by distance was observed among distant populations, but isolation at close geographic proximity was found. Patterns were consistent with high historical gene flow through pollen and seed dispersal at both short and long distances. We also tested four pre-germination treatments among populations to improve germination rates; however, germination rates remained low and only cold-stratification treatments induced germination in some populations. To bolster population regeneration, introductions of cuttings from several source populations are recommended, in combination with in situ management practices that improve seedling survival and with ex situ propagation.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Juniperus , Bélgica , Europa (Continente) , Juniperus/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
6.
Environ Pollut ; 288: 117742, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329057

RESUMO

Plants can take up and transform brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) from soil, water and the atmosphere, which is of considerable significance to the geochemical cycle of BFRs and OPFRs and their human exposure. However, the current understanding of the plant uptake, translocation, accumulation, and metabolism of BFRs and OPFRs in the environment remains very limited. In this review, recent studies on the accumulation and transformation of BFRs and OPFRs in plants are summarized, the main factors affecting plant accumulation from the aspects of root uptake, foliar uptake, and plant translocation are presented, and the metabolites and metabolic pathways of BFRs and OPFRs in plants are analyzed. It was found that BFRs and OPFRs can be taken up by plants through partitioning to root lipids, as well as through gaseous and particle-bound deposition to the leaves. Their microscopic distribution in roots and leaves is important for understanding their accumulation behaviors. BFRs and OPFRs can be translocated in the xylem and phloem, but the specific transport pathways and mechanisms need to be further studied. BFRs and OPFRs can undergo phase I and phase II metabolism in plants. The identification, quantification and environmental fate of their metabolites will affect the assessment of their ecological and human exposure risks. Based on the issues mentioned above, some key directions worth studying in the future are proposed.


Assuntos
Retardadores de Chama , Atmosfera , Humanos , Organofosfatos , Folhas de Planta
7.
J Hazard Mater ; 351: 215-223, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550555

RESUMO

Polybrominated diphenyl ethers (PBDEs), recognised emerging contaminants, widely exist and persist in the environment. Samples were taken from a heavily contaminated farm in Taiwan located near a factory known to regularly use PBDEs. Sweet potato vines (Ipomoea batatas L., a commonly consumed vegetable in Asia) growing in the surrounding farmlands were found to contain a high concentration of PBDEs of 19.36 ng/g. The possibility of PBDEs translocation into sweet potato vines from soil samples was evaluated. To prevent the PBDEs from air through that factory, the pot experiments were performed in a greenhouse, which showed that the PBDEs concentration of 24 congeners (tri- through deca-BDE) in the sweet potato vine after 14-days cultivation was 29.90 ng/g, 40-times higher than that in the contaminated soil. After another 14-days, the PBDE concentration decreased to 12.30 ng/g as high-brominated PBDEs were transformed to medium- and/or low-brominated PBDEs in the sweet potato vine. The bioconcentration factor (BCF) values exceeded 20.0 for most of the deca-, nona-, and octa-BDEs but BCFs were below 18.9 for the rest of the medium- and low-brominated PBDEs. Our results demonstrate that high-brominated PBDEs can translocate into leafy vegetables from soils, and sweet potato vines tend to accumulate high-brominated PBDEs into their edible parts.


Assuntos
Éteres Difenil Halogenados/metabolismo , Ipomoea batatas/metabolismo , Plantas Comestíveis/metabolismo , Poluentes do Solo/metabolismo , Monitoramento Ambiental
8.
BMC Res Notes ; 10(1): 204, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606172

RESUMO

BACKGROUND: The Greater Water Parsnip, Sium latifolium (Apiaceae), is a marginal aquatic perennial currently endangered in England and consequently the focus of a number of conservation translocation projects. Microsatellite markers were developed for S. latifolium to facilitate comparison of genetic diversity and composition between natural and introduced populations. RESULTS: We selected 65 S. latifolium microsatellite (MiSeq) sequences and designed primer pairs for these. Primer sets were tested in 32 individuals. We found 15 polymorphic loci that amplified consistently. For the selected 15 loci, the number of alleles per locus ranged from 8 to 17. For all loci, S. latifolium individuals displayed up to four alleles indicating polyploidy in this species. CONCLUSIONS: These are the first microsatellite loci developed for S. latifolium and each individual displayed 1-4 alleles per locus, suggesting polyploidy in this species. These markers provide a valuable resource in evaluating the population genetic composition of this endangered species and thus will be useful for guiding conservation and future translocations of the species.


Assuntos
Apiaceae/genética , Tetraploidia , Cromossomos de Plantas , Marcadores Genéticos , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA