Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.738
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191846

RESUMO

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Espectrometria de Massas/métodos , Plantas/genética , Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
2.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730849

RESUMO

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Estreptófitas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Domínios Proteicos , Estreptófitas/classificação , Simbiose/genética , Sintenia/genética
3.
Annu Rev Cell Dev Biol ; 32: 103-126, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501448

RESUMO

One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.


Assuntos
Redes Reguladoras de Genes , Plantas/genética , Variação Genética , Genótipo , Fenótipo , Biologia de Sistemas
4.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38072749

RESUMO

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , DNA de Plantas/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA não Traduzido/genética , Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Genes Dev ; 34(1-2): 24-36, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31896690

RESUMO

Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.


Assuntos
Impressão Genômica/genética , Modelos Genéticos , Plantas/genética , Metilação de DNA
6.
Development ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133134

RESUMO

Rho/Rac of plant (ROP) GTPases are a plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs (ROPGEF and SPIKE (SPK)), and GAPs (ROPGAP and ROP ENHANCER (REN)). MpROP regulates the development of various tissues and organs such as rhizoids, gemmae, and air chambers. While the ROPGEF, KARAPPO (MpKAR) is essential for gemma initiation, the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in MpREN-involving processes. Overexpression of MpROPGAP, MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, most likely by controlling MpROP activation in M. polymorpha.

7.
Mol Cell ; 73(5): 1066-1074.e3, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661982

RESUMO

Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues.


Assuntos
Processamento Alternativo/efeitos da radiação , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Plantas Geneticamente Modificadas/efeitos da radiação , RNA de Plantas/efeitos da radiação , Elongação da Transcrição Genética/efeitos da radiação , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escuridão , Histonas/genética , Histonas/metabolismo , Cinética , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
8.
Mol Cell ; 73(1): 73-83.e6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30415948

RESUMO

DNA methylation and H3K9me are hallmarks of heterochromatin in plants and mammals, and are successfully maintained across generations. The biochemical and structural basis for this maintenance is poorly understood. The maintenance DNA methyltransferase from Zea mays, ZMET2, recognizes dimethylation of H3K9 via a chromodomain (CD) and a bromo adjacent homology (BAH) domain, which flank the catalytic domain. Here, we show that dinucleosomes are the preferred ZMET2 substrate, with DNA methylation preferentially targeted to linker DNA. Electron microscopy shows one ZMET2 molecule bridging two nucleosomes within a dinucleosome. We find that the CD stabilizes binding, whereas the BAH domain enables allosteric activation by the H3K9me mark. ZMET2 further couples recognition of H3K9me to an increase in the specificity for hemimethylated versus unmethylated DNA. We propose a model in which synergistic coupling between recognition of nucleosome spacing, H3K9 methylation, and DNA modification allows ZMET2 to maintain DNA methylation in heterochromatin with high fidelity.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Nucleossomos/enzimologia , Proteínas de Plantas/metabolismo , Animais , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/ultraestrutura , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Microscopia Eletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Xenopus laevis/genética , Xenopus laevis/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(11): e2312761121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446852

RESUMO

By masterfully balancing directed growth and passive mechanics, plant roots are remarkably capable of navigating complex heterogeneous environments to find resources. Here, we present a theoretical and numerical framework which allows us to interrogate and simulate the mechanical impact of solid interfaces on the growth pattern of plant organs. We focus on the well-known waving, coiling, and skewing patterns exhibited by roots of Arabidopsis thaliana when grown on inclined surfaces, serving as a minimal model of the intricate interplay with solid substrates. By modeling growing slender organs as Cosserat rods that mechanically interact with the environment, our simulations verify hypotheses of waving and coiling arising from the combination of active gravitropism and passive root-plane responses. Skewing is instead related to intrinsic twist due to cell file rotation. Numerical investigations are outfitted with an analytical framework that consistently relates transitions between straight, waving, coiling, and skewing patterns with substrate tilt angle. Simulations are found to corroborate theory and recapitulate a host of reported experimental observations, thus providing a systematic approach for studying in silico plant organs behavior in relation to their environment.


Assuntos
Arabidopsis , Ciclo Celular , Proliferação de Células , Fenômenos Eletromagnéticos , Raízes de Plantas
10.
Proc Natl Acad Sci U S A ; 121(34): e2405632121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150783

RESUMO

Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.


Assuntos
Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Luz , Poliadenilação , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(13): e2317795121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466878

RESUMO

With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.


Assuntos
Formigas , Magnoliopsida , Animais , Filogenia , Evolução Biológica , Fósseis , Extinção Biológica , Biodiversidade
12.
Trends Biochem Sci ; 47(10): 851-864, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35397925

RESUMO

Chloroplasts are the sites of photosynthesis in plants and algae and, by extension, are essential for most life on Earth. Their maintenance is costly and complex due to the inherent photo-oxidative damage incurred by photosynthetic chemistry. Chloroplast degradation and cell death are mechanisms by which plants acclimate to such stress and serve a dual purpose: protecting cells and organs by removing reactive oxygen species-producing chloroplasts and redistributing nutrients to other tissues. Here I review recent progress in understanding the molecular mechanisms initiating and facilitating such degradation and show these are complex processes involving multiple pathways. Due to the links to photosynthesis and nitrogen metabolism, there is great potential to manipulate these pathways to increase crop yield and quality under stressful environments.


Assuntos
Cloroplastos , Fotossíntese , Morte Celular , Cloroplastos/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Annu Rev Genet ; 52: 159-183, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30183405

RESUMO

In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.


Assuntos
Fungos/genética , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Plantas/genética , Eucariotos/genética , Eucariotos/metabolismo , Fungos/metabolismo , Transferência Genética Horizontal , Genoma/genética , Óperon/genética , Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(7): e2201946119, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745797

RESUMO

Plants will experience considerable changes in climate within their geographic ranges over the next several decades. They may respond by exhibiting niche flexibility and adapting to changing climates. Alternatively, plant taxa may exhibit climate fidelity, shifting their geographic distributions to track their preferred climates. Here, we examine the responses of plant taxa to changing climates over the past 18,000 y to evaluate the extent to which the 16 dominant plant taxa of North America have exhibited climate fidelity. We find that 75% of plant taxa consistently exhibit climate fidelity over the past 18,000 y, even during the times of most extreme climate change. Of the four taxa that do not consistently exhibit climate fidelity, three-elm (Ulmus), beech (Fagus), and ash (Fraxinus)-experience a long-term shift in their realized climatic niche between the early Holocene and present day. Plant taxa that migrate longer distances better maintain consistent climatic niches across transition periods during times of the most extreme climate change. Today, plant communities with the highest climate fidelity are found in regions with high topographic and microclimate heterogeneity that are expected to exhibit high climate resilience, allowing plants to shift distributions locally and adjust to some amount of climate change. However, once the climate change buffering of the region is exceeded, these plant communities will need to track climates across broader landscapes but be challenged to do so because of the low habitat connectivity of the regions.


Assuntos
Mudança Climática , Plantas , Ecossistema , América do Norte , Microclima
15.
Proc Natl Acad Sci U S A ; 120(38): e2306268120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676908

RESUMO

Carnivorous pitcher plants (Nepenthes) are a striking example of a natural pitfall trap. The trap's slippery rim, or peristome, plays a critical role in insect capture via an aquaplaning mechanism that is well documented. While the peristome has received significant research attention, the conspicuous variation in peristome geometry across the genus remains unexplored. We examined the mechanics of prey capture using Nepenthes pitcher plants with divergent peristome geometries. Inspired by living material, we developed a mathematical model that links the peristomes' three-dimensional geometries to the physics of prey capture under the laws of Newtonian mechanics. Linking form and function enables us to test hypotheses related to the function of features such as shape and ornamentation, orientation in a gravitational field, and the presence of "teeth," while analysis of the energetic costs and gains of a given geometry provides a means of inferring potential evolutionary pathways. In a separate modeling approach, we show how prey size may correlate with peristome dimensions for optimal capture. Our modeling framework provides a physical platform to understand how divergence in peristome morphology may have evolved in the genus Nepenthes in response to shifts in prey diversity, availability, and size.


Assuntos
Evolução Biológica , Caryophyllales , Ligante de CD40 , Planta Carnívora
16.
Proc Natl Acad Sci U S A ; 120(14): e2205794120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972432

RESUMO

As climate changes in sub-Saharan Africa (SSA), Africa's "forgotten" food crops offer a wide range of options to diversify major staple production as a key measure toward achieving zero hunger and healthy diets. So far, however, these forgotten food crops have been neglected in SSA's climate-change adaptation strategies. Here, we quantified their capacity to adapt cropping systems of SSA's major staples of maize, rice, cassava, and yams to changing climates for the four subregions of West, Central, East, and Southern Africa. We used climate-niche modeling to explore their potential for crop diversification or the replacement of these major staples by 2070, and assessed the possible effects on micronutrient supply. Our results indicated that approximately 10% of the present production locations of these four major staples in SSA may experience novel climate conditions in 2070, ranging from a high of almost 18% in West Africa to a low of less than 1% in Southern Africa. From an initial candidate panel of 138 African forgotten food crops embracing leafy vegetables, other vegetables, fruits, cereals, pulses, seeds and nuts, and roots and tubers, we selected those that contributed most to covering projected future and contemporary climate conditions of the major staples' production locations. A prioritized shortlist of 58 forgotten food crops, able to complement each other in micronutrient provision, was determined, which covered over 95% of assessed production locations. The integration of these prioritized forgotten food crops in SSA's cropping systems will support the "double-win" of more climate-resilient and nutrient-sensitive food production in the region.


Assuntos
Produtos Agrícolas , Dieta Saudável , África Subsaariana , Verduras , Micronutrientes , Mudança Climática , Agricultura/métodos , Abastecimento de Alimentos
17.
Proc Natl Acad Sci U S A ; 120(27): e2300166120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364120

RESUMO

The earliest evidence of agriculture in the Horn of Africa dates to the Pre-Aksumite period (ca. 1600 BCE). Domesticated C3 cereals are considered to have been introduced from the Near East, whereas the origin (local or not) and time of domestication of various African C4 species such as sorghum, finger millet, or t'ef remain unknown. In this paper, we present the results of the analysis of microbotanical residues (starch and phytoliths) from grinding stones recovered from two archaeological sites in northeastern Tigrai (Ethiopia), namely Mezber and Ona Adi. Together, both sites cover a time period that encompasses the earliest evidence of agriculture in the region (ca. 1600 BCE) to the fall of the Kingdom of Aksum (ca. 700 CE). Our data indicate that these communities featured complex mixed economies which included the consumption of both domestic and wild plant products since the Initial Pre-Aksumite Phase (ca. 1600 to 900 BCE), including C3 crops and legumes, but also C4 cereals and geophytes. These new data expand the record of C4 plant use in the Horn of Africa to over 1,000 y. It also represents the first evidence for the consumption of starchy products in the region. These results have parallels in the wider northeastern African region where complex food systems have been documented. Altogether, our data represent a significant challenge to our current knowledge of Pre-Aksumite and Aksumite economies, forcing us to rethink the way we define these cultural horizons.


Assuntos
Domesticação , Grão Comestível , Produtos Agrícolas , Agricultura , Etiópia
18.
Proc Natl Acad Sci U S A ; 120(24): e2221826120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276425

RESUMO

Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.


Assuntos
Insetos , Espécies Introduzidas , Animais , Plantas
19.
Semin Cell Dev Biol ; 134: 37-58, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35292191

RESUMO

The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.


Assuntos
Evolução Biológica , Embriófitas , Plantas , Filogenia
20.
Plant J ; 117(2): 449-463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846604

RESUMO

Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.


Assuntos
Daucus carota , Heracleum , Humanos , Heracleum/genética , Espécies Introduzidas , Ecossistema , Filogenia , Duplicação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA