Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Biol Chem ; 299(7): 104871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247760

RESUMO

Malaria causes >600 thousand fatalities each year, with most cases attributed to the human-infectious Plasmodium falciparum species. Many rodent-infectious Plasmodium species, like Plasmodium berghei and Plasmodium yoelii, have been used as model species that can expedite studies of this pathogen. P. yoelii is an especially good model for investigating the mosquito and liver stages of development because key attributes closely resemble those of P. falciparum. Because of its importance, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. Although this was a breakthrough effort, the assembly consisted of >5000 contiguous sequences that adversely impacted the annotated gene models. While other rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using PacBio DNA sequencing. In addition, we use Nanopore and Illumina RNA sequencing of mixed blood stages to create complete gene models that include coding sequences, alternate isoforms, and UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic framework for studies with this commonly used rodent malaria model species.


Assuntos
Malária , Parasitos , Plasmodium yoelii , Animais , Humanos , Plasmodium yoelii/genética , Roedores , Malária/parasitologia , Fígado
2.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38624215

RESUMO

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Assuntos
Antígenos CD , Antígenos de Protozoários , Macrófagos , Malária , Plasmodium yoelii , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Membrana Celular/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/imunologia , Malária/parasitologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Plasmodium yoelii/imunologia , Ligação Proteica , Transdução de Sinais
3.
Bioorg Med Chem Lett ; 97: 129561, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967655

RESUMO

Following the economic and social state of humanity, Malaria is categorized as one of the life-threatening illness epidemics in under developed countries. For the eradication of the same, 1,2,4-trioxanes 17a1-a2, 17b1-b2, 17c1-c2 15a-c, 18 and 19 have been synthesized continuing the creation of a novel series. Additionally, these novel compounds were tested for their effectiveness against the multidrug-resistant Plasmodium yoelii nigeriensis in mice model using both oral and intramuscular (im) administration routes. The two most potent compounds of the series, 17a1 and 17a2, demonstrated 100 % protection at 48 mg/kg x 4 days via oral route, which is twice as potent as artemisinin. In this model artemisinin provided 100 % protection at a dose of 48 mg/kg × 4 days and 80 % protection at 24 mg/kg × 4 days via im route.


Assuntos
Antimaláricos , Artemisininas , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Artemisininas/farmacologia
4.
Antimicrob Agents Chemother ; 67(7): e0160622, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37314349

RESUMO

The increasing burden and spread of resistant malaria parasites remains an immense burden to public health. These factors have driven the demand to search for a new therapeutic agent. From our screening, phebestin stood out with nanomolar efficacy against Plasmodium falciparum 3D7. Phebestin was initially identified as an aminopeptidase N inhibitor. Phebestin inhibited the in vitro multiplication of the P. falciparum 3D7 (chloroquine-sensitive) and K1 (chloroquine-resistant) strains at IC50 values of 157.90 ± 6.26 nM and 268.17 ± 67.59 nM, respectively. Furthermore, phebestin exhibited no cytotoxic against human foreskin fibroblast cells at 2.5 mM. In the stage-specific assay, phebestin inhibited all parasite stages at 100 and 10-fold its IC50 concentration. Using 72-h in vitro exposure of phebestin at concentrations of 1 µM on P. falciparum 3D7 distorted the parasite morphology, showed dying signs, shrank, and prevented reinvasion of RBCs, even after the compound was washed from the culture. An in silico study found that phebestin binds to P. falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP), as observed for bestatin. In vivo evaluation using P. yoelii 17XNL-infected mice with administrations of 20 mg/kg phebestin, once daily for 7 days, resulted in significantly lower parasitemia peaks in the phebestin-treated group (19.53%) than in the untreated group (29.55%). At the same dose and treatment, P. berghei ANKA-infected mice showed reduced parasitemia levels and improved survival compared to untreated mice. These results indicate that phebestin is a promising candidate for development as a potential therapeutic agent against malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminopeptidases/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Cloroquina/farmacologia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei
5.
Exp Parasitol ; 246: 108475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707015

RESUMO

Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium yoelii , Humanos , Animais , Camundongos , Parasitos/metabolismo , Proteína A6 Ligante de Cálcio S100 , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Imunidade Celular , Plasmodium yoelii/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 117(32): 19465-19474, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709745

RESUMO

Infection by malaria parasites triggers dynamic immune responses leading to diverse symptoms and pathologies; however, the molecular mechanisms responsible for these reactions are largely unknown. We performed Trans-species Expression Quantitative Trait Locus analysis to identify a large number of host genes that respond to malaria parasite infections. Here we functionally characterize one of the host genes called receptor transporter protein 4 (RTP4) in responses to malaria parasite and virus infections. RTP4 is induced by type I IFN (IFN-I) and binds to the TANK-binding kinase (TBK1) complex where it negatively regulates TBK1 signaling by interfering with expression and phosphorylation of both TBK1 and IFN regulatory factor 3. Rtp4-/- mice were generated and infected with malaria parasite Plasmodiun berghei ANKA. Significantly higher levels of IFN-I response in microglia, lower parasitemia, fewer neurologic symptoms, and better survival rates were observed in Rtp4-/- than in wild-type mice. Similarly, RTP4 deficiency significantly reduced West Nile virus titers in the brain, but not in the heart and the spleen, of infected mice, suggesting a specific role for RTP4 in brain infection and pathology. This study reveals functions of RTP4 in IFN-I response and a potential target for therapy in diseases with neuropathology.


Assuntos
Encéfalo/patologia , Interferon Tipo I/metabolismo , Malária Cerebral/patologia , Chaperonas Moleculares/metabolismo , Animais , Encéfalo/parasitologia , Encéfalo/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Chaperonas Moleculares/genética , Fosforilação , Plasmodium berghei/fisiologia , Plasmodium yoelii/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
7.
Parasitol Res ; 122(11): 2513-2524, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707607

RESUMO

CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Interleucina-10/metabolismo , Interleucina-17 , Interleucina-4 , Fígado , Malária/imunologia , Malária/metabolismo , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240201

RESUMO

Sepsis is a common disease in sub-Saharan Africa and Asia, where malaria is also prevalent. To determine whether Plasmodium infection might enhance susceptibility to endotoxin shock, we used a mouse model of lipopolysaccharide (LPS) administration. Our results indicated that Plasmodium yoelii infection in mice strongly enhanced the susceptibility of the host to develop endotoxin shock. This increased susceptibility to endotoxin shock was correlated with a synergistic effect of Plasmodium and LPS on the secretion of Tumor Necrosis Factor (TNF). TNF contributed mostly to lethality after the dual challenge since neutralization with an anti-TNF antibody provided protection from death. Plasmodium infection also induced an enhancement of the serum levels of LPS soluble ligands, sCD14 and Lipopolysaccharide Binding Protein. In this regard, our data confirm that Plasmodium infection can profoundly modify responses to secondary bacteria challenges, resulting in dysregulated cytokine expression and pathological effects. If confirmed in humans, LPS soluble receptors might serve as markers of susceptibility to septic shock.


Assuntos
Malária , Plasmodium yoelii , Choque Séptico , Humanos , Camundongos , Animais , Choque Séptico/metabolismo , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
9.
J Proteome Res ; 21(10): 2261-2276, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36169658

RESUMO

Malaria varies in severity, with complications ranging from uncomplicated to severe malaria. Severe malaria could be attributed to peripheral hyperparasitemia or cerebral malaria. The metabolic interactions between the host and Plasmodium species are yet to be understood during these infections of varied pathology and severity. An untargeted metabolomics approach utilizing the liquid chromatography-mass spectrometry platform has been used to identify the affected host metabolic pathways and associated metabolites in the serum of murine malaria models with uncomplicated malaria, hyperparasitemia, and experimental cerebral malaria. We report that mice with malaria share similar metabolic attributes like higher levels of bile acids, bile pigments, and steroid hormones that have been reported for human malaria infections. Moreover, in severe malaria, upregulated levels of metabolites like phenylalanine, histidine, valine, pipecolate, ornithine, and pantothenate, with decreased levels of arginine and hippurate, were observed. Metabolites of sphingolipid metabolism were upregulated in experimental cerebral malaria. Higher levels of 20-hydroxy-leukotriene B4 and epoxyoctadecamonoenoic acids were found in uncomplicated malaria, with lower levels observed for experimental cerebral malaria. Our study provides insights into host biology during different pathological stages of malaria disease and would be useful for the selection of animal models for evaluating diagnostic and therapeutic interventions against malaria. The raw data files are available via MetaboLights with the identifier MTBLS4387.


Assuntos
Malária Cerebral , Animais , Arginina , Ácidos e Sais Biliares , Pigmentos Biliares , Modelos Animais de Doenças , Hipuratos , Histidina , Hormônios , Humanos , Camundongos , Ornitina , Fenilalanina , Plasmodium berghei , Esfingolipídeos , Valina
10.
Antimicrob Agents Chemother ; 66(12): e0026922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36342168

RESUMO

We generated highly chloroquine (CQ)-resistant (ResCQ) Plasmodium yoelii parasites by stepwise exposure to increasing concentrations of CQ and CQ-sensitive parasites (SenCQ) by parallel mock treatments. No mutations in genes that are associated with drug resistance were detected in ResCQ clones. Autophagy-related genes were highly upregulated in SenCQ compared to ResCQ parasites during CQ treatment. This indicates that CQ resistance can be developed in the malaria parasite by the inhibition of autophagy as an alternative drug resistance mechanism.


Assuntos
Antimaláricos , Cloroquina , Resistência a Medicamentos , Plasmodium yoelii , Proteínas de Protozoários , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Protozoários/genética , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/genética
11.
Parasite Immunol ; 44(1-2): e12901, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931316

RESUMO

AIMS: Immunomodulatory effects of parasitic infections on the outcomes of allergic or autoimmune disorders have been addressed in many experimental studies. We examined the effects of Plasmodium yoelii 17X NL (Py) infection on collagen-induced arthritis (CIA). METHODS AND RESULTS: Male DBA/1J mice were immunized with bovine type II collagen (IIC). Py inoculation was induced at three different time points (1, 4 weeks after or 4 weeks before the immunization). Only the inoculation at 4 weeks after IIC immunization significantly inhibited arthritis development. Non-malarial anaemia induced by phenylhydrazine hydrochloride (PHZ) did not affect arthritis development. In the infected mice, anti-IIC IgG levels were transiently reduced. In addition, splenic production of pro-arthritic cytokines (IL-17 and TNF-α) and IFN-γ decreased, whereas IL-10 production increased. Flow cytometric analysis clarified that the main IL-10 producers in Py-infected mice had the CD4+ CD25- Foxp3- phenotype, presumably Tr1 cells. CONCLUSION: We demonstrated that experimental malarial infection alleviated autoimmune arthritis via immunomodulation, suggesting the importance of malaria in the hygiene hypothesis and the significance of searching for therapeutic immunomodulatory molecules from malarial parasites.


Assuntos
Artrite Experimental , Malária , Animais , Artrite Experimental/prevenção & controle , Bovinos , Citocinas , Imunomodulação , Malária/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos DBA , Roedores
12.
Malar J ; 21(1): 206, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768835

RESUMO

BACKGROUND: Rapid emergence of Plasmodium resistance to anti-malarial drug mainstays has driven a continual effort to discover novel drugs that target different biochemical pathway (s) during infection. Plasma membrane Calcium + 2 ATPase (PMCA4), a novel plasma membrane protein that regulates Calcium levels in various cells, namely red blood cell (RBC), endothelial cell and platelets, represents a new biochemical pathway that may interfere with susceptibility to malaria and/or severe malaria. METHODS: This study identified several pharmacological inhibitors of PMCA4, namely ATA and Resveratrol, and tested for their anti-malarial activities in vitro and in vivo using the Plasmodium falciparum 3D7 strain, the Plasmodium berghei ANKA strain, and Plasmodium yoelii 17XL strain as model. RESULTS: In vitro propagation of P. falciparum 3D7 strain in the presence of a wide concentration range of the inhibitors revealed that the parasite growth was inhibited in a dose-dependent manner, with IC50s at 634 and 0.231 µM, respectively. RESULTS: The results confirmed that both compounds exhibit moderate to potent anti-malarial activities with the strongest parasite growth inhibition shown by resveratrol at 0.231 µM. In vivo models using P. berghei ANKA for experimental cerebral malaria and P. yoelii 17XL for the effect on parasite growth, showed that the highest dose of ATA, 30 mg/kg BW, increased survival of the mice. Likewise, resveratrol inhibited the parasite growth following 4 days intraperitoneal injection at the dose of 100 mg/kg BW. CONCLUSION: The findings indicate that the PMCA4 of the human host may be a potential target for novel anti-malarials, either as single drug or in combination with the currently available effective anti-malarials.


Assuntos
Antimaláricos , Malária Cerebral , Parasitos , Animais , Cálcio/farmacologia , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática , Plasmodium berghei , Plasmodium falciparum , Resveratrol/farmacologia
13.
Malar J ; 21(1): 32, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109868

RESUMO

BACKGROUND: Regulatory T cells are known to play a key role to counter balance the protective immune response and immune mediated pathology. However, the role of naturally occurring regulatory cells CD4+CD25+Foxp3+ in malaria infection during the disease pathogenesis is controversial. Beside this, ICOS molecule has been shown to be involved in the development and function of regulatory T cell enhance IL-10 production. Therefore, possible involvement of the ICOS dependent regulatory CD4+ICOS+Foxp3+ T cells in resistance/susceptibility during malaria parasite is explored in this study. METHODS: 5 × 105 red blood cells infected with non-lethal and lethal parasites were inoculated in female Balb/c mice by intra-peritoneal injection. Infected or uninfected mice were sacrificed at early (3rd day post infection) and later stage (10th day post infection) of infection. Harvested cells were analysed by using flow cytometer and serum cytokine by Bioplex assay. RESULTS: Thin blood films show that percentages of parasitaemia increases with disease progression in infections with the lethal malaria parasite and mice eventually die by day 14th post-infection. Whereas in case of non-lethal malaria parasite, parasitaemia goes down by 7th day post infection and gets cleared within 13th day. The number of CD4+ ICOS+ T cells increases in lethal infection with disease progression. Surprisingly, in non-lethal parasite, ICOS expression decreases after day 7th post infection as parasitaemia goes down. The frequency of CD4+ICOS+FoxP3+ Tregs was significantly higher in lethal parasitic infection as compared to the non-lethal parasite. The level of IL-12 cytokine was remarkably higher in non-lethal infection compared to the lethal infection. In contrast, the level of IL-10 cytokines was higher in lethal parasite infection compared to the non-lethal parasite. CONCLUSION: Taken together, these data suggest that lethal parasite induce immunosuppressive environment, protecting from host immune responses and help the parasite to survive whereas non-lethal parasite leads to low frequencies of Treg cells seldom impede immune response that allow the parasite to get self-resolved.


Assuntos
Malária/etiologia , Linfócitos T Reguladores/fisiologia , Animais , Antígenos CD4/fisiologia , Citocinas/análise , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/fisiologia , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/fisiologia , Interleucina-10/análise , Malária/diagnóstico , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/diagnóstico , Parasitemia/parasitologia , Fragmentos de Peptídeos/fisiologia , Plasmodium berghei , Plasmodium chabaudi , Plasmodium yoelii , Organismos Livres de Patógenos Específicos , Baço/citologia
14.
BMC Immunol ; 22(1): 6, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430765

RESUMO

BACKGROUD: It is important to expound the opposite clinical outcomes between children and adulthood for eradicate malaria. There remains unknown about the correlation between adaptive immune response and age-related in malaria. METHODS: 4 and 8-week-old mice were used to mimic children and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and Plasmodium yoelii MSP-1-specific IgG were measured by ELISA. RESULTS: The adult group showed greater resistance to P. yoelii 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4+T-bet+IFN-γ+ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after P. yoelii 17XNL infection. The percentage of CD4+GATA3+IL-4+ Th2 cells and CD4+CXCR5+ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after P. yoelii 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and P. yoelii MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4+ or activated CD4+ T cells in the 8-week-old mice as compared to the 4-week-old group. CONCLUSIONS: Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4+ T cells exhaustion in P. yoelii 17XNL infected 8-week-old mice.


Assuntos
Imunidade Adaptativa/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Fatores Etários , Animais , Modelos Animais de Doenças , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Malária/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/mortalidade , Plasmodium yoelii/classificação , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/metabolismo
15.
Malar J ; 20(1): 280, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167535

RESUMO

BACKGROUND: Malaria parasites are known to be vulnerable to oxidative stress. In this study, the effects of the administration of α-tocopheryloxy acetic acid (α-TEA), which is a vitamin E analogue mitocan, on Plasmodium yoelii infection in mice were examined. METHODS: Alpha-TEA was mixed with diet and fed to C57BL/6J mice before and/or after infection. For parasite infection, 4 × 104 red blood cells infected with P. yoelii (strain 17XL) were inoculated by intraperitoneal injection. In another series of experiment, the effect of the oral administration of α-TEA on P. yoelii 17XL infection in mice was examined. Finally, the combined effect of α-TEA and dihydroartemisinin or chloroquine on P. yoelii 17XL infection was examined. RESULTS: When 0.25% α-TEA was mixed with the diet for 7 days before infection and 14 days after infection (in total for 21 days), for 14 days after infection, and for 11 days from the third day after infection, all P. yoelii 17XL-infected mice survived during the observation period. However, all control mice died within 12 days after infection. These results indicated that α-TEA functions effectively even when administered post-infection. The oral administration of α-TEA for P. yoelii 17XL infection was also significant. Although the infected mice in the solvent control died within 10 days after infection, 90% of the mice infected with P. yoelii 17XL survived during the observation period when treated with 10 mg/head/day of α-TEA for 3 days from day 3 after infection. Although the combined effect of α-TEA and dihydroartemisinin (DHA) or chloroquine on P. yoelii 17XL infection was significant, no synergistic or additive effects were observed from the survival curve. CONCLUSIONS: This study showed the beneficial effects of α-TEA on the experimental infection of mice with P. yoelii 17XL. The stimulatory action of α-TEA on mitochondria and the accompanying reactions, such as reactive oxygen species production, and induction of apoptosis might have some effect on malarial infection.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Plasmodium yoelii/efeitos dos fármacos , Tocoferóis/farmacologia , Administração Oral , Animais , Combinação de Medicamentos , Quimioterapia Combinada , Injeções Intraperitoneais , Malária/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
16.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32958528

RESUMO

Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.


Assuntos
Bacteriemia/imunologia , Citocinas/sangue , Malária/imunologia , Mastócitos/metabolismo , Plasmodium yoelii/imunologia , Animais , Bacteriemia/parasitologia , Quimiocina CCL2/sangue , Quimases/sangue , Feminino , Íleo/citologia , Íleo/metabolismo , Íleo/parasitologia , Imunoglobulina E/sangue , Inflamação/sangue , Interleucina-10/sangue , Interleucina-13/metabolismo , Interleucina-4/sangue , Interleucina-6/sangue , Interleucina-9/sangue , Leucócitos/citologia , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , RNA Ribossômico 16S/sangue , RNA Ribossômico 16S/genética
17.
Malar J ; 19(1): 424, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228734

RESUMO

BACKGROUND: Well-defined promoters are essential elements for genetic studies in all organisms, and enable controlled expression of endogenous genes, transgene expression, and gene editing. Despite this, there is a paucity of defined promoters for the rodent-infectious malaria parasites. This is especially true for Plasmodium yoelii, which is often used to study the mosquito and liver stages of malarial infection, as well as host immune responses to infection. METHODS: Here six promoters were selected from across the parasite's life cycle (clag-a, dynein heavy chain delta, lap4, trap, uis4, lisp2) that have been invoked in the literature as controlling their genes in a stage-specific manner. A minimal promoter length for the constitutive pybip promoter that confers strong expression levels was also determined, which is useful for expression of reporters and gene editing enzymes. RESULTS: Instead, it was observed that these promoters confer stage-enriched gene control, as some parasites also effectively use these promoters in other stages. Thus, when used alone, these promoters could complicate the interpretation of results obtained from promoter swaps, stage-targeted recombination, or gene editing experiments. CONCLUSIONS: Together these data indicate that achieving stage-specific effects, such as gene editing, is likely best done using a two-component system with independent promoter activities overlapping only in the intended life cycle stage.


Assuntos
Genes de Protozoários , Malária/fisiopatologia , Plasmodium yoelii/genética , Regiões Promotoras Genéticas , Animais , Feminino , Camundongos
18.
BMC Infect Dis ; 20(1): 266, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252652

RESUMO

BACKGROUND: Emerging data has suggested that Tregs, Th17, Th1 and Th2 are correlated with early immune mechanisms by controlling Plasmodium infection. Plasmodium infection appeared to impair the antigen presentation and maturation of DCs, leading to attenuation of specific cellular immune response ultimately. Hence, in this study, we aim to evaluate the relevance between DCs and Tregs/Th17 populations in the process and outcomes of infection with Plasmodium yoelii 17XL (P.y17XL). METHODS: DCs detection/analysis dynamically was performed by Tregs depletion or Th17 neutralization in P.y17XL infected BALB/c mice via flow cytometry. Then the levels of cytokines production were detected using enzyme-linked mmunosorbent assay (ELISA). RESULTS: Our results indicated that Tregs depletion or Th17 neutralization in BALB/c mice infected with P.y17XL significantly up-regulated the percentages of mDC and pDC, increased the expressions of major histocompatibility complex (MHC) class II, CD80, CD86 on DCs and the levels of IL-10/IL-12 secreted by DCs, indicating that abnormal amplification of Tregs or Th17 may damage the maturation and function of DCs during the early stage of malaria infection. Interestingly, we also found that the abnormal amplification of Th17, as well as Tregs, could inhibit the maturation of DCs. CONCLUSIONS: Tregs skewing or Th17 amplification during the early stage of malaria infection may inhibit the maturation and function of DCs by modifying the subsets of DCs, expressions of surface molecules on DCs and secretion mode of cytokines.


Assuntos
Células Dendríticas/imunologia , Malária/imunologia , Plasmodium yoelii/patogenicidade , Linfócitos T Reguladores/patologia , Células Th17/parasitologia , Animais , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Interações Hospedeiro-Parasita , Imunidade Celular , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/parasitologia , Células Th1/imunologia , Células Th17/patologia
19.
J Biol Chem ; 292(22): 9394-9408, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416609

RESUMO

In malaria, CD36 plays several roles, including mediating parasite sequestration to host organs, phagocytic clearance of parasites, and regulation of immunity. Although the functions of CD36 in parasite sequestration and phagocytosis have been clearly defined, less is known about its role in malaria immunity. Here, to understand the function of CD36 in malaria immunity, we studied parasite growth, innate and adaptive immune responses, and host survival in WT and Cd36-/- mice infected with a non-lethal strain of Plasmodium yoelii Compared with Cd36-/- mice, WT mice had lower parasitemias and were resistant to death. At early but not at later stages of infection, WT mice had higher circulatory proinflammatory cytokines and lower anti-inflammatory cytokines than Cd36-/- mice. WT mice showed higher frequencies of proinflammatory cytokine-producing and lower frequencies of anti-inflammatory cytokine-producing dendritic cells (DCs) and natural killer cells than Cd36-/- mice. Cytokines produced by co-cultures of DCs from infected mice and ovalbumin-specific, MHC class II-restricted α/ß (OT-II) T cells reflected CD36-dependent DC function. WT mice also showed increased Th1 and reduced Th2 responses compared with Cd36-/- mice, mainly at early stages of infection. Furthermore, in infected WT mice, macrophages and neutrophils expressed higher levels of phagocytic receptors and showed enhanced phagocytosis of parasite-infected erythrocytes than those in Cd36-/- mice in an IFN-γ-dependent manner. However, there were no differences in malaria-induced humoral responses between WT and Cd36-/- mice. Overall, the results show that CD36 plays a significant role in controlling parasite burden by contributing to proinflammatory cytokine responses by DCs and natural killer cells, Th1 development, phagocytic receptor expression, and phagocytic activity.


Assuntos
Antígenos CD36/imunologia , Imunidade Humoral , Malária/imunologia , Parasitemia/imunologia , Plasmodium yoelii/imunologia , Animais , Antígenos CD36/genética , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Malária/genética , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Parasitemia/genética , Fagocitose/genética , Células Th1/imunologia , Células Th2/imunologia
20.
Biochem Biophys Res Commun ; 500(2): 261-267, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653104

RESUMO

Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Biblioteca Gênica , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Sequência de Aminoácidos , Animais , Biotinilação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Ligação ao Cálcio/química , Quelantes/farmacologia , Camundongos Endogâmicos BALB C , Plasmodium yoelii/metabolismo , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA