Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.655
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 55: 349-376, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34546797

RESUMO

Neural crest stem/progenitor cells arise early during vertebrate embryogenesis at the border of the forming central nervous system. They subsequently migrate throughout the body, eventually differentiating into diverse cell types ranging from neurons and glia of the peripheral nervous system to bones of the face, portions of the heart, and pigmentation of the skin. Along the body axis, the neural crest is heterogeneous, with different subpopulations arising in the head, neck, trunk, and tail regions, each characterized by distinct migratory patterns and developmental potential. Modern genomic approaches like single-cell RNA- and ATAC-sequencing (seq) have greatly enhanced our understanding of cell lineage trajectories and gene regulatory circuitry underlying the developmental progression of neural crest cells. Here, we discuss how genomic approaches have provided new insights into old questions in neural crest biology by elucidating transcriptional and posttranscriptional mechanisms that govern neural crest formation and the establishment of axial level identity.


Assuntos
Crista Neural , Neurônios , Diferenciação Celular/genética , Linhagem da Célula/genética , Movimento Celular/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Neurônios/metabolismo
2.
Development ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940470

RESUMO

SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine if SoxB1 transcription factors have a regulatory function in NPB formation. Herein, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show their combined activity is needed for normal NPB gene expression. Together, these data identify a novel role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.

3.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828854

RESUMO

The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Placa Neural , Fator de Transcrição AP-2 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião de Galinha , Metilação de DNA/genética , Placa Neural/metabolismo , Placa Neural/embriologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/metabolismo , Regiões Promotoras Genéticas/genética , Sítios de Ligação
4.
Proc Natl Acad Sci U S A ; 121(28): e2318706121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968110

RESUMO

Variable viscosity in Earth's mantle exerts a fundamental control on mantle convection and plate tectonics, yet rigorously constraining the underlying parameters has remained a challenge. Inverse methods have not been sufficiently robust to handle the severe viscosity gradients and nonlinearities (arising from dislocation creep and plastic failure) while simultaneously resolving the megathrust and bending slabs globally. Using global plate motions as constraints, we overcome these challenges by combining a scalable nonlinear Stokes solver that resolves the key tectonic features with an adjoint-based Bayesian approach. Assuming plate cooling, variations in the thickness of continental lithosphere, slabs, and broad scale lower mantle structure as well as a constant grain size through the bulk of the upper mantle, a good fit to global plate motions is found with a nonlinear upper mantle stress exponent of 2.43 [Formula: see text] 0.25 (mean [Formula: see text] SD). A relatively low yield stress of 151 [Formula: see text] 19 MPa is required for slabs to bend during subduction and transmit a slab pull that generates asymmetrical subduction. The recovered long-term strength of megathrusts (plate interfaces) varies between different subduction zones, with South America having a larger strength and Vanuatu and Central America having lower values with important implications for the stresses driving megathrust earthquakes.

5.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346197

RESUMO

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Assuntos
Condrócitos , Estudo de Associação Genômica Ampla , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Proliferação de Células , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
6.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37665167

RESUMO

Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.


Assuntos
Fatores de Crescimento de Fibroblastos , Gastrulação , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Padronização Corporal/genética , Gastrulação/genética , Morfogênese/genética , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
7.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539462

RESUMO

Endochondral ossification contributes to longitudinal skeletal growth. Osteoblasts, which are bone-forming cells, appear close to terminally differentiated hypertrophic chondrocytes during endochondral ossification. We established mice with conditional knockout (cKO) of Smad4, an essential co-activator for transforming growth factor ß family signaling. The mice showed a marked increase in bone volume in the metaphysis as a result of increased bone formation by osteoblasts, in which ß-catenin, an effector of canonical Wnt signaling, accumulated. We identified Wnt7b as a factor with increased expression in growth plate cartilage in Smad4 cKO mice. Wnt7b mRNA was expressed in differentiated chondrocytes and suppressed by BMP4 stimulation. Ablation of Wnt7b blunted the increase in bone in adult Smad4 cKO mice and reduced skeletal growth in juvenile mice. Overall, we conclude that Wnt7b is a crucial factor secreted from hypertrophic chondrocytes to initiate endochondral ossification. These results suggest that Smad4-dependent BMP signaling regulates the Wnt7b-ß-catenin axis during endochondral ossification.


Assuntos
Condrócitos , Osteogênese , Animais , Camundongos , beta Catenina/metabolismo , Osso e Ossos , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Osteogênese/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756587

RESUMO

The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.


Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismo
9.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747104

RESUMO

During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.


Assuntos
Orientação de Axônios , Axônios , Orientação de Axônios/fisiologia , Axônios/metabolismo , Cones de Crescimento , Medula Espinal/metabolismo , Via de Sinalização Wnt , Animais , Galinhas
10.
Proc Natl Acad Sci U S A ; 120(1): e2214048120, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574682

RESUMO

Seismically imaged axial melt lenses (AMLs) are seen almost everywhere along the axis of fast-spreading ridges but at only a few localized segment centers on slow-spreading ridges. Standard models assuming that AMLs form when melt percolating upward pools where freezing produces an impermeable cap do not explain this fundamental observation. To tackle this long-standing problem, we combine a crustal density model and a thermal model with a recent mechanical model for sill formation. The mechanical model predicts that AMLs form below the axial lithosphere but only if the average density of the axial brittle lithosphere is not greater than the magma density. For standard thermal models, crustal density structures inferred from seismic velocity data and normal crustal thicknesses, AMLs are found to be stable along all of a ridge segment for spreading rates greater than about 50 mm/y. To explain slow-spreading observations, we assume that a share of the melt produced by the mantle upwelling all along a segment is focused to the segment center. Some of this melt partially crystallizes, releasing latent heat, before the evolved magma flows along the axis to build the crust away from the segment center. This "extra" heat, beyond what is supplied by the magma that builds the crust near the segment center, results in the lithosphere thin enough for stable melt lenses at the segment center. Our results are consistent with observations and offer a quantitative explanation of the marked difference in the distribution of AMLs along fast- versus slow-spreading centers.

11.
Dev Biol ; 511: 26-38, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38580174

RESUMO

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Assuntos
Tubo Neural , Medula Espinal , Animais , Medula Espinal/embriologia , Tubo Neural/embriologia , Crista Neural/embriologia , Crista Neural/citologia , Crista Neural/fisiologia , Diferenciação Celular/fisiologia , Neuroglia/fisiologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Humanos
12.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37096733

RESUMO

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Assuntos
Mecanotransdução Celular , Domínios PDZ , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miosinas/genética , Miosinas/metabolismo
13.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919126

RESUMO

Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Crânio/metabolismo , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Transdução de Sinais , Crânio/embriologia , Estresse Mecânico , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679479

RESUMO

Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.


Assuntos
Encéfalo , Furões , Imageamento por Ressonância Magnética , Animais , Furões/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Estudos Longitudinais , Caracteres Sexuais
15.
Proc Natl Acad Sci U S A ; 119(44): e2210258119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279430

RESUMO

The paleomagnetic record is an archive of Earth's geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.


Assuntos
Fenômenos Geológicos , Austrália Ocidental
16.
Genomics ; 116(3): 110838, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537807

RESUMO

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Neovascularização Fisiológica , Osteogênese , Receptores Notch , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Hipóxia Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Angiogênese
17.
Dev Dyn ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721717

RESUMO

BACKGROUND: Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development. RESULTS: We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials. CONCLUSIONS: The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.

18.
Dev Dyn ; 253(4): 435-446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37767857

RESUMO

BACKGROUND: R-spondins (Rspos) are secreted proteins that modulate Wnt/ß-catenin signaling. At the early stages of spinal cord development, Wnts (Wnt1, Wnt3a) and Rspos (Rspo1, Rspo3) are co-expressed in the roof plate, suggesting that Rspos are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands. RESULTS: Here, we found that Rspo1 and Rspo3, as well as Wnt1 and Wnt3a, maintained roof-plate-specific expression until late embryonic stages. Rspo1- and Rspo3-double-knock-out (dKO) embryos partially exhibited the phenotype of Wnt1 and Wnt3a dKO embryos. While the number of Ngn2-positive sensory lineage neural crest cells is reduced in Rspo-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/ß-catenin signaling was not obviously changed in developing spinal cord of dKO embryos. CONCLUSIONS: Our results show that Rspo1 and Rspo3 are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/ß-catenin signaling in a context-dependent manner.


Assuntos
Crista Neural , beta Catenina , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Crista Neural/metabolismo , Via de Sinalização Wnt , Medula Espinal
19.
Genesis ; 62(1): e23580, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37974491

RESUMO

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Assuntos
Crista Neural , Fatores de Transcrição , Crista Neural/metabolismo , Fatores de Transcrição/metabolismo , Cabeça , Crânio/metabolismo , Ribossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
20.
Semin Cell Dev Biol ; 127: 17-36, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34949507

RESUMO

Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.


Assuntos
Células-Tronco Pluripotentes , Osso e Ossos , Cartilagem , Diferenciação Celular/fisiologia , Humanos , Mesoderma , Crista Neural , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA