Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Phylogenet Evol ; 195: 108055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485106

RESUMO

Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.


Assuntos
Glycine max , Heterópteros , Animais , Glycine max/genética , Filogenia , Variação Genética , Evolução Molecular , DNA Mitocondrial/genética , Filogeografia , Ásia Oriental , Heterópteros/genética
2.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482393

RESUMO

Holocene climate warming has dramatically altered biological diversity and distributions. Recent human-induced emissions of greenhouse gases will exacerbate global warming and thus induce threats to cold-adapted taxa. However, the impacts of this major climate change on transcontinental temperate species are still poorly understood. Here, we generated extensive genomic datasets for a water strider, Aquarius paludum, which was sampled across its entire distribution in Eurasia and used these datasets in combination with ecological niche modeling (ENM) to elucidate the influence of the Holocene and future climate warming on its population structure and demographic history. We found that A. paludum consisted of two phylogeographic lineages that diverged in the middle Pleistocene, which resulted in a "west-east component" genetic pattern that was probably triggered by Central Asia-Mongoxin aridification and Pleistocene glaciations. The diverged western and eastern lineages had a second contact in the Holocene, which shaped a temporary hybrid zone located at the boundary of the arid-semiarid regions of China. Future predictions detected a potentially novel northern corridor to connect the western and eastern populations, indicating west-east gene flow would possibly continue to intensify under future warming climate conditions. Further integrating phylogeographic and ENM analyses of multiple Eurasian temperate taxa based on published studies reinforced our findings on the "west-east component" genetic pattern and the predicted future northern corridor for A. paludum. Our study provided a detailed paradigm from a phylogeographic perspective of how transcontinental temperate species differ from cold-adapted taxa in their response to climate warming.


Assuntos
Biodiversidade , Água , Comunicação , Ecossistema , Variação Genética , Humanos , Filogenia , Filogeografia
3.
Mol Phylogenet Evol ; 189: 107932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751827

RESUMO

Diplomystidae is an early-diverged family of freshwater catfish endemic to southern South America. We have recently collected five juvenile specimens belonging to this family from the Bueno River Basin, a basin which the only previous record was a single juvenile specimen collected in 1996. This finding confirms the distribution of the family further South in northern Patagonia, but poses new questions about the origin of this population in an area with a strong glacial history. We used phylogenetic analyses to evaluate three different hypotheses that could explain the origin of this population in the basin. First, the population could have originated in Atlantic basins (East of the Andes) and dispersed to the Bueno Basin after the Last Glacial Maximum (LGM) via river reversals, as it has been proposed for other population of Diplomystes as well as for other freshwater species from Patagonia. Second, the population could have originated in the geographically close Valdivia Basin (West of the Andes) and dispersed south to its current location in the Bueno Basin. Third, regardless of its geographic origin (West or East of the Andes), the Bueno Basin population could have a longer history in the basin, surviving in situ through the LGM. In addition, we conducted species delimitation analyses using a recently developed method that uses a protracted model of speciation. Our goal was to test the species status of the Bueno Basin population along with another controversial population in Central Chile (Biobío Basin), which appeared highly divergent in previous studies with mtDNA. The phylogenetic analyses showed that the population from the Bueno Basin is more related to Atlantic than to Pacific lineages, although with a deep divergence that predated the LGM, supporting in situ survival rather than postglacial dispersal. In addition, these analyses also showed that the species D. nahuelbutaensis is polyphyletic, supporting the need for a taxonomic reevaluation. The species delimitation analyses supported two new species which are described using molecular diagnostic characters: Diplomystes arratiae sp. nov. from the Biobío, Carampangue, and Laraquete basins, maintaining D. nahuelbutaensis valid only for the Imperial Basin, and Diplomystes habitae sp. nov. from the Bueno Basin. This study greatly increases the number of species within both the family Diplomystidae and Patagonia, and contributes substantially to the knowledge of the evolution of southern South American freshwater biodiversity during its glacial history. Given the important contribution to the phylogenetic diversity of the family, we recommend a high conservation priority for both new species. Finally, this study highlights an exemplary scenario where species descriptions based only on DNA data are particularly valuable, bringing additional elements to the ongoing debate on DNA-based taxonomy.


Assuntos
Peixes-Gato , Animais , Filogenia , Peixes-Gato/genética , Chile , DNA Mitocondrial/genética , Filogeografia , Variação Genética
4.
J Phycol ; 56(4): 1109-1113, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32315445

RESUMO

Populations of many Mediterranean marine species show a strong phylogeographic structure, but the knowledge available for native seaweeds is limited. We investigated the genetic diversity of the green alga Halimeda tuna based on two plastid markers (tufA gene and a newly developed amplicon spanning five ribosomal protein genes and intergenic spacers, the rpl2-rpl14 region). The tufA sequences showed that Mediterranean H. tuna represents a single, well-defined species. The rpl2-rpl14 results highlighted a genetic separation between western and eastern Mediterranean populations; specimens collected from widely scattered locations in the Adriatic/Ionian region shared a haplotype unique to this region, and formed a group separated from all western Mediterranean regions. Specimens from Sardinia also formed a unique haplotype. Within the western Mediterranean basin, a gradual shift in the frequency of haplotypes was apparent along a West-East gradient. Our results represent the first clear evidence of an East-West genetic cleavage in a native Mediterranean macroalga and offer an interesting perspective for further research into fine-scale seaweed population structure in the NW Mediterranean Sea.


Assuntos
Clorófitas , Alga Marinha , Teorema de Bayes , Clorófitas/genética , DNA Mitocondrial , Variação Genética , Haplótipos , Itália , Mar Mediterrâneo , Filogenia , Filogeografia
5.
BMC Evol Biol ; 19(1): 151, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340765

RESUMO

BACKGROUND: Allopatric speciation has played a particularly important role in archipelagic settings where populations evolve in isolation after colonizing different islands. The Indo-Australasian island realm is an unparalleled natural laboratory of biotic diversification. Here we explore how the level of earth-historic isolation has influenced genetic differentiation across the region by investigating phylogeographic patterns in the Pitta sordida species complex. RESULTS: We generated a de novo genome and compared population genomics of 29 individuals of Pitta sordida from the entire distributional range and we reconstructed phylogenetic relationship using mitogenomes, a multi-nuclear gene dataset and single nucleotide polymorphisms (SNPs). We found deep divergence between an eastern and a western group of taxa across Indo-Australasia. Within both groups we have identified major lineages that are geographically separated into Philippines, Borneo, western Sundaland, and New Guinea, respectively. Although these lineages are genetically well-differentiated, suggesting a long-term isolation, there are signatures of extensive gene flow within each lineage throughout the Pleistocene, despite the wide geographic range occupied by some of them. We found little evidence of hybridization or introgression among the studied taxa, but forsteni from Sulawesi makes an exception. This individual, belonging to the eastern clade, is genetically admixed between the western and eastern clades. Geographically this makes sense as Sulawesi is not far from Borneo that houses a population of hooded pittas that belongs to the western clade. CONCLUSIONS: We found that geological vicariance events cannot explain the current genetic differentiation in the Pitta sordida species complex. Instead, the glacial-interglacial cycles may have played a major role therein. During glacials the sea level could be up to 120 m lower than today and land bridges formed within both the Sunda Shelf and the Sahul Shelf permitting dispersal of floral and faunal elements. The geographic distribution of hooded pittas shows the importance of overwater, "stepping-stone" dispersals not only to deep-sea islands, but also from one shelf to the other. The most parsimonious hypothesis is an Asian ancestral home of the Pitta sordida species complex and a colonization from west to east, probably via Wallacea.


Assuntos
Planeta Terra , Genoma , Ilhas , Passeriformes/genética , Animais , Austrália , Fluxo Gênico , Variação Genética , Índia , Filogenia , Filogeografia , Dinâmica Populacional , Análise de Componente Principal , Fatores de Tempo
6.
Proc Biol Sci ; 286(1905): 20190291, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31213189

RESUMO

Although the description of bioregions dates back to the origin of biogeography, the processes originating their associated species pools have been seldom studied. Ancient historical events are thought to play a fundamental role in configuring bioregions, but the effects of more recent events on these regional biotas are largely unknown. We used a network approach to identify regional and sub-regional faunas of European Carabus beetles and developed a method to explore the relative contribution of dispersal barriers, niche similarities and phylogenetic history on their configuration. We identify a transition zone matching the limit of the ice sheets at the Last Glacial Maximum. While southern species pools are mostly separated by dispersal barriers, in the north species are mainly sorted by their environmental niches. Strikingly, most phylogenetic structuration of Carabus faunas occurred during the Pleistocene. Our results show how extreme recent historical events-such as Pleistocene climate cooling, rather than just deep-time evolutionary processes-can profoundly modify the composition and structure of geographical species pools.


Assuntos
Mudança Climática , Filogeografia , Animais , Biodiversidade , Evolução Biológica , Biota , Besouros , Ecossistema , Variação Genética , Camada de Gelo , Filogenia
7.
Mol Phylogenet Evol ; 125: 196-203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29625230

RESUMO

Cyclical periods of global cooling have been important drivers of biotic differentiation throughout the Quaternary. Ice age-induced sea level fluctuations can lead to changing patterns of land connections, both facilitating and disrupting gene flow. In this study, we test if species with differing life histories are differentially affected by Quaternary land connections. We used genome-wide SNPs in combination with mitochondrial gene sequences to analyse levels of divergence and gene flow between two songbird complexes across two Wallacean islands that have been repeatedly connected during glaciations. Although the two bird complexes are similar in ecological attributes, the forest and edge-inhabiting golden whistler Pachycephala pectoralis is comparatively flexible in its diet and niche requirements as compared to the henna-tailed jungle-flycatcher Cyornis colonus, which is largely restricted to the forest interior. Using population-genomic and coalescent approaches, we estimated levels of gene flow, population differentiation and divergence time between the two island populations. We observed higher levels of differentiation, an approximately two to four times deeper divergence time and near-zero levels of gene flow between the two island populations of the more forest-dependent henna-tailed jungle-flycatcher as compared to the more generalist golden whistler. Our results suggest that Quaternary land bridges act as semipermeable agents of gene flow in Wallacea, allowing only certain taxa to connect between islands while others remain isolated. Quaternary land bridges do not accommodate all terrestrial species equally, differing in suitability according to life history and species biology. More generalist species are likely to use Quaternary land connections as a conduit for gene flow between islands whereas island populations of more specialist species may continue to be reproductively isolated even during periods of Quaternary land bridges.


Assuntos
Aves/genética , Fluxo Gênico , Animais , Sequência de Bases , DNA Mitocondrial/genética , Genoma , Geografia , Ilhas , Ochnaceae/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Aves Canoras/genética , Fatores de Tempo
8.
Genome ; 61(9): 625-634, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30001499

RESUMO

High-resolution mitogenomics of within-species relationships can answer such phylogeographic questions as how species survived the most recent glaciation, as well as identify contemporary factors such as physical barriers, isolation, and gene flow. We examined the mitogenomic population structure of three at-risk species of wolffish: Atlantic (Anarhichas lupus), spotted (A. minor), and northern (A. denticulatus). These species are extensively sympatric across the North Atlantic but exhibit very different life history strategies, a combination that results in concordant and discordant patterns of genetic variation and structure. Wolffish haplogroups were not structured geographically: Atlantic and spotted wolffish each comprised three shallow clades, whereas northern wolffish comprised two deeper but unstructured lineages. We suggest that wolffish species survived in isolation in multiple glacial refugia, either refugia within refugia (Atlantic and spotted wolffish) or more distant refugia (northern wolffish), followed by secondary admixture upon post-glacial recolonisation of the North Atlantic.


Assuntos
Espécies em Perigo de Extinção , Evolução Molecular , Genoma Mitocondrial , Perciformes/genética , Animais , Haplótipos , Características de História de Vida , Filogeografia , Isolamento Reprodutivo
9.
BMC Evol Biol ; 17(1): 22, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100168

RESUMO

BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes. CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.


Assuntos
Oceanos e Mares , Rhizophoraceae/crescimento & desenvolvimento , Análise por Conglomerados , Fluxo Gênico , Variação Genética , Geografia , Funções Verossimilhança , Nucleotídeos/genética , Filogenia , Dinâmica Populacional , Probabilidade , Fatores de Tempo
10.
Mol Ecol ; 26(15): 4027-4044, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28437593

RESUMO

The extent of the Pleistocene glaciations in the Patagonian Channel region (southwesternmost South America) and their impact on the vegetation there are largely unknown. Whether the regional flora was wiped out completely (tabula rasa) or survived in ice-free pockets (in situ survival) is still an open question. The molecular imprint of either scenario should still be visible in extant populations. Therefore, DNA sequence data of Oreobolus obtusangulus Gaudich. (Cyperaceae) were analysed. This species is an abundant constituent of Patagonian cushion peat bogs, one of the Patagonian Channel region's major vegetation types. Three hundred and eighty-four individuals from 48 populations were sequenced for two chloroplast (ycf3-psaA and trnQUUG -psbK intergenic spacers) and 14 nuclear loci containing simple sequence repeats (SSRs; microsatellites). Phylogenetic reconstructions and the geographic distribution of genetic diversity revealed that the species was split into three main lineages whose general distributions comprise three separate major regions, that is, south-central Chile, Fuego-Patagonia and the East Patagonian Andes, which probably constitute glacial refugia. Postglacial migration fronts formed a suture zone with high levels of genetic diversity in the Northwest Patagonian Andes, where remnants of a supposedly ancestral lineage were also found to be locally restricted to a single population (Huinay). The heavily glaciated Patagonian Channels were likely recolonized from the northwest, and partly from the south. Although the westernmost Patagonian Channel population (Estero Bachem) harboured private SSR alleles (singletons) and showed slightly elevated genetic diversity, it remained unclear whether this population actually survived in situ. This study helps fill a major gap in reconstructing the Pleistocene vegetation history of West and Andean Patagonia.


Assuntos
Evolução Biológica , Cyperaceae/classificação , Variação Genética , Genética Populacional , Filogenia , Chile , DNA de Cloroplastos/genética , Haplótipos , Repetições de Microssatélites , Filogeografia , Análise de Sequência de DNA
11.
Mol Phylogenet Evol ; 109: 180-190, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082005

RESUMO

Canthon cyanellus is a roller dung beetle with a wide distribution range in the tropical forests of the New World. In Mexico, it inhabits the Pacific and the Gulf coasts, the Yucatan Peninsula and the south mainly in the State of Chiapas. This species shows a wide geographical variation in cuticle color, which has been used as defining trait for subspecies. In this study we analyzed the phylogeographic and demographic history of the Mexican populations of C. cyanellus using DNA sequences of the nuclear ITS2, and the mitochondrial COI and 16S genes. We found that not all the current valid subspecies are supported by the molecular analysis. The populations are genetically and geographically structured in five lineages. The diversification events that gave origin to the main lineages within this species complex occurred during the Pleistocine in a time range of 1.63-0.91Myr. The demographic history of these lineages suggests post-glacial expansions toward the middle and the end of the Pleistocene. The combined data of mitochondrial and nuclear DNA suggest that the phylogeographic structure and demographic history of the C. cyanellus populations are the result of: the geological and volcanic activity that occurred from the end of the Pliocene to the Pleistocene; and the contraction and expansion of tropical forests due to the glacial and inter-glacial cycles during the Pleistocene. Landscape changes derived from historical events have affected the demographic history of the populations of this species. The results presented here point to the need to review the taxonomic status and delimitation of the lineages encompassed in the Canthon cyanellus complex.


Assuntos
Besouros/classificação , Filogenia , Filogeografia , Clima Tropical , Animais , Núcleo Celular/genética , Besouros/genética , DNA Mitocondrial/genética , Loci Gênicos , Variação Genética , Haplótipos , México , Dinâmica Populacional , Fatores de Tempo
12.
BMC Evol Biol ; 16: 185, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27612944

RESUMO

BACKGROUND: Distributions of European fish species were shaped by glaciations and the geological history of river networks until human activities partially abrogated the restrictions of biogeographical regions. The nearby origins of the Rhine, Rhone, Danube and Po rivers in the Swiss Alps allow the examination of historical and human-influenced patterns in fish genetic structure over a small geographic scale. We investigated these patterns in the widespread European chub (Squalius cephalus) from the Rhone, Rhine and Danube catchments and its proposed southern sister species Italian chub (Squalius squalus) from the Po catchment. RESULTS: A phylogenetic tree constructed from mitochondrial Cytochrome b and COI sequences was consistent with earlier work in that it showed a separation of European chub and Italian chub, which was also reflected in microsatellite allele frequencies, morphological traits and shape differences quantified by geometric morphometrics. A new finding was that the predominant mitochondrial haplotype of European chub from the Rhine and Rhone catchments was also discovered in some individuals from Swiss populations of the Italian chub, presumably as a result of human translocation. Consistent with postglacial recolonizations from multiple refugia along the major rivers, the nuclear genetic structure of the European chub largely reflected drainage structure, but it was modified by watershed crossings between Rhine and Rhone near Lake Geneva as well as between Danube and Rhine near Lake Constance. CONCLUSION: Our study adds new insights into the cyprinid colonization history of central Europe by showing that multiple processes shaped the distribution of different chub lineages around the Swiss Alps. Interestingly, we find evidence that cross-catchment migration has been mediated by unusual geological events such as drainage captures or watershed crossings facilitated by retreating glaciers, as well as evidence that human transport has interfered with the historical distribution of these fish (European chub haplotypes present in the Italian chub). The desirable preservation of evolutionarily distinct lineages will thus require the prevention of further translocations.


Assuntos
Cyprinidae/anatomia & histologia , Cyprinidae/genética , Animais , Mudança Climática , Cyprinidae/fisiologia , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Haplótipos , Humanos , Camada de Gelo , Repetições de Microssatélites , Filogenia , Rios
13.
BMC Evol Biol ; 16(1): 194, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27654122

RESUMO

BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects.

14.
Mol Phylogenet Evol ; 99: 76-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988412

RESUMO

By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range.


Assuntos
Clima , Ecossistema , Florestas , Variação Genética , Passeriformes/genética , Filogeografia , Migração Animal , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , México , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia , Fatores de Tempo
15.
J Evol Biol ; 29(8): 1523-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27124740

RESUMO

Quaternary environmental changes substantially impacted the landscape and promoted rapid evolutionary changes in many species; however, analyses of adaptive phenotypic variation in plants have usually neglected the underlying historical context. Here, we associate phylogeography and phenotypic evolution by analysing the divergence of Calceolaria polyrhiza multivariate floral phenotype after a Pleistocene post-glacial expansion in Patagonia. Phenotypic matrix (P) properties (size, shape, orientation and phenotypic integration) of six refugium and six recent populations from two different phylogroups were compared following different approaches. We found that P-matrix shape and orientation remained stable despite the strong phylogeographic footprint of post-glacial expansion. However, average proportional reductions in matrix size supported the expectation that drift had a significant effect on the floral phenotype in the northern phylogroup. When phylogeographic history was not included in the analyses, the results overestimated phenotypic differences, whereas under explicit phylogeographic control, drift appeared as the best explanation for matrix differences. In general, recent populations showed a larger phenotypic divergence among them, but a lower overall phenotypic variation than refugium populations. Random Skewers analyses indicated a lower potential response to selection in recently colonized populations than in refugium populations. We discuss that the combination of phylogeographic analyses with geographical distribution of functional phenotypic (genotypic) variation is critical not only to understand how historical effects influence adaptive evolution, but also to improve field comparisons in evolutionary ecology studies.


Assuntos
Calceolariaceae/genética , Filogenia , Filogeografia , Argentina , Meio Ambiente , Variação Genética
16.
Mol Phylogenet Evol ; 73: 146-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486990

RESUMO

The catfish family Diplomystidae is one of the earliest branching lineages within the diverse order Siluriformes and shows a deep phylogenetic split from all other extant and extinct major catfish groups. Despite its relevance in the evolution of siluriforms, phylogenetic relationships within the Diplomystidae are poorly understood, and prior to this study, no phylogenetic hypotheses using molecular data had been published. By conducting a phylogeographic study across the entire distribution of the family, that encompasses river systems from Central-South Chile and Argentina, we provide the first molecular phylogenetic hypothesis among all known species of Diplomystidae, and in addition, investigate how their evolutionary history relates to major historical events that took place in southern South America. Our phylogenetic analyses show four main lineages and nine sub-lineages strongly structured geographically. All Pacific basin populations, with one exception (those found in the Baker basin) clustered within three of the four main lineages (clades I-III), while all populations from Atlantic basins and those from the Baker basin clustered in a single main clade (clade IV). There was a tendency for genetic diversity to decrease from north to south for Pacific basins consistent with an increasing north-south ice coverage during the last glacial maximum. However, we did not find a statistically significant correlation between genetic diversity and latitude. Analysis of molecular variance (AMOVA) showed that river basins and the barrier created by the Andes Mountains explained a high percentage of the genetic variation. Interestingly, most of the genetic variation among drainages was explained among Pacific basins. Molecular phylogenetic analyses agree only partially with current systematics. The geographical distribution of main lineages did not match species distribution and suggests a new taxonomic hypothesis with support for four species of Diplomystes, three species distributed allopatrically from the Rapel to the Valdivia basin, and only one species distributed in Baker and Atlantic basins. High genetic differentiation among river basins suggests that conservation efforts should focus on protecting populations in each basin in order to preserve the genetic diversity of one of the oldest groups of catfishes on the earth today.


Assuntos
Peixes-Gato/classificação , Peixes-Gato/genética , Conservação dos Recursos Naturais , Filogenia , Animais , Argentina , Oceano Atlântico , Chile , Variação Genética/genética , Camada de Gelo , Oceano Pacífico , Filogeografia , Reprodutibilidade dos Testes , Rios , Análise de Sequência de DNA
17.
J Hered ; 105(5): 597-610, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24939890

RESUMO

The secondary freshwater fish fauna of the western-Iberian Peninsula basin is primarily restricted to local coastal streams, and man-made salt evaporation ponds, etc., which are susceptible to periodical flood and drought events. Despite its uniqueness in ecological adaptation to high saltwater tolerance, very little is known about this fauna's population dynamics and evolutionary history. The killifish, Aphanius baeticus (Cyprinodontidae) is an endemic species restricted to river basins on Spain's southern Atlantic coastline, considered as "Endangered." In this study, the genetic structure, diversity and historical demography of A. baeticus were analyzed using mitochondrial (cytochrome b, N=131) and nuclear (4 out of 19 microsatellites tested, N=288) markers across its distribution range. The phylogenetic and networking reconstruction revealed subtle phylogeographic structuring. A scattered expansion at the beginning of the interglacial periods, coupled with posterior events of extinction and colonization caused by periodical cycles of flooding, could explain the absence of well-defined phylogenetic relationships among populations. Moreover, very low genetic diversity values and a weak population differentiation were detected. We proposed that dispersals allowed by periodic floods connecting river drainages may have promoted a wide genetic exchange among populations and could have contributed to the current genetic relatedness of these populations.


Assuntos
DNA Mitocondrial/genética , Fundulidae/genética , Variação Genética , Genética Populacional , Animais , Teorema de Bayes , Evolução Biológica , Análise por Conglomerados , Citocromos b/genética , Espécies em Perigo de Extinção , Feminino , Fluxo Gênico , Loci Gênicos , Haplótipos , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Dinâmica Populacional , Rios , Análise de Sequência de DNA , Espanha
18.
Biology (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626983

RESUMO

Pleistocene glaciations had profound impact on the spatial distribution and genetic makeup of species in temperate ecosystems. While the glacial period trapped several species into glacial refugia and caused abrupt decline in large populations, the interglacial period facilitated population growth and range expansion leading to allopatric speciation. Here, we analyzed 40 genomes of four species of ibex and found that Himalayan ibex in the Pamir Mountains evolved independently after splitting from its main range about 0.1 mya following the Pleistocene species pump concept. Demographic trajectories showed Himalayan ibex experienced two historic bottlenecks, one each c. 0.8-0.5 mya and c. 50-30 kya, with an intermediate large population expansion c. 0.2-0.16 mya coinciding with Mid-Pleistocene Transitions. We substantiate with multi-dimensional evidence that Himalayan ibex is an evolutionary distinct phylogenetic species of Siberian ibex which need to be prioritized as Capra himalayensis for taxonomic revision and conservation planning at a regional and global scale.

19.
Zookeys ; 1122: 19-37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761205

RESUMO

The bumble bee fauna of the Russian Arctic is rather poorly known. Kolguev Island, a remote insular territory in the Barents Sea, is one of the deficiently studied areas. In this study, material on Kolguev's bumble bees is re-examined, phylogeographic data analysed, putative scenarios explaining the origin of the bumble bee fauna on the island discussed, and the biology and phenology of these insular populations described. Five bumble bee species, i.e., Bombusflavidus, B.lapponicus, B.jonellus, B.pyrrhopygus, and B.balteatus, were recorded on this island. All of these species are widespread throughout the Eurasian Arctic. Bumble bee populations on Kolguev Island are characterised by a low level of molecular divergence from mainland populations. Based on paleogeographic reconstructions and phylogeographic patterns, it is hypothesised that the bumble bees appeared on this island in the Early Holocene. The lack of rodents (lemmings and voles) sharply decreases the number of available nesting places for bumble bees on Kolguev Island.

20.
Animals (Basel) ; 10(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650538

RESUMO

Divergence-time estimation critically improves the understanding of biogeography processes underlying the distribution of species, especially when fossil data is not available. We hypothesise that the Asian black-spined toad, Duttaphrynus melanostictus, expanded into the Eastern Indomalaya following the Quaternary glaciations with the subsequent colonisation of new landscapes during the Last Glacial Maximum. Divergence dating inferred from 364 sequences of mitochondrial tRNAGly ND3 supported the emergence of a common ancestor to the three D. melanostictus clades around 1.85 (±0.77) Ma, matching with the Lower to Mid-Pleistocene transition. Duttaphrynus melanostictus then dispersed into Southeast Asia from the central Indo-Pacific and became isolated in the Southern Sundaic and Wallacea regions 1.43 (±0.10) Ma through vicariance as a result of sea level oscillations. The clade on the Southeast Asian mainland then colonised the peninsula from Myanmar to Vietnam and expanded towards Southeastern China at the end of the Mid-Pleistocene Revolution 0.84 (±0.32) Ma. Population dynamics further highlight an expansion of the Southeast Asian mainland population towards Taiwan, the Northeastern edge of the species' range after the last interglacial, and during the emergence of the Holocene human settlements around 7000 BP. Thus, the current divergence of D. melanostictus into three segregated clades was mostly shaped by Quaternary glaciations, followed by natural dispersion events over land bridges and accelerated by anthropogenic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA