Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
2.
Mol Plant Pathol ; 23(1): 133-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34636149

RESUMO

Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Doenças das Plantas , Esporos Fúngicos , Virulência
3.
Virulence ; 10(1): 1047-1063, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31814506

RESUMO

Fap7, an important ribosome assembly factor, plays a vital role in pre-40S small ribosomal subunit synthesis in Saccharomyces cerevisiae via its ATPase activity. Currently, the biological functions of its homologs in filamentous fungi remain elusive. Here, MoFap7, a homologous protein of ScFap7, was identified in the rice blast fungus Magnaporthe oryzae, which is a devastating fungal pathogen in rice and threatens food security worldwide. ΔMofap7 mutants exhibited defects in growth and development, conidial morphology, appressorium formation and infection, and were sensitive to oxidative stress. In addition, site-directed mutagenesis analysis confirmed that the conserved Walker A motif and Walker B motif in MoFap7 are essential for the biological functions of M. oryzae. We further analyzed the regulation mechanism of MoFap7 in pathogenicity. MoFap7 was found to interact with MoMst50, a regulator functioning in the MAPK Pmk1 signaling pathway, that participates in modulating plant penetration and cell-to-cell invasion by regulating the phosphorylation of MoPmk1. Moreover, MoFap7 interacted with the GTPases MoCdc42 and MoRac1 to control growth and conidiogenesis. Taken together, the results of this study provide novel insights into MoFap7-mediated orchestration of the development and pathogenesis of filamentous fungi.


Assuntos
Proteínas Fúngicas/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Magnaporthe/patogenicidade , Mutagênese Sítio-Dirigida , Oryza/microbiologia , Estresse Oxidativo , Transdução de Sinais , Esporos Fúngicos/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA