Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.448
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37806310

RESUMO

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormônios Peptídicos/metabolismo , Peptídeos/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Isolamento Reprodutivo
2.
Cell ; 186(17): 3593-3605.e12, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37516107

RESUMO

Animal fertilization relies on hundreds of sperm racing toward the egg, whereas, in angiosperms, only two sperm cells are delivered by a pollen tube to the female gametes (egg cell and central cell) for double fertilization. However, unsuccessful fertilization under this one-pollen-tube design can be detrimental to seed production and plant survival. To mitigate this risk, unfertilized-gamete-controlled extra pollen tube entry has been evolved to bring more sperm cells and salvage fertilization. Despite its importance, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we report that, in Arabidopsis, the central cell secretes peptides SALVAGER1 and SALVAGER2 in a directional manner to attract pollen tubes when the synergid-dependent attraction fails or is terminated by pollen tubes carrying infertile sperm cells. Moreover, loss of SALs impairs the fertilization recovery capacity of the ovules. Therefore, this research uncovers a female gamete-attraction system that salvages seed production for reproductive assurance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/fisiologia , Fertilização , Tubo Polínico , Sementes , Células Germinativas Vegetais
3.
Cell ; 176(4): 856-868.e10, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735635

RESUMO

The ornately geometric walls of pollen grains have inspired scientists for decades. We show that the evolved diversity of these patterns is entirely recapitulated by a biophysical model in which an initially uniform polysaccharide layer in the extracellular space, mechanically coupled to the cell membrane, phase separates to a spatially modulated state. Experiments reveal this process occurring in living cells. We observe that in ∼10% of extant species, this phase separation reaches equilibrium during development such that individual pollen grains are identical and perfectly reproducible. About 90% of species undergo an arrest of this process prior to equilibrium such that individual grains are similar but inexact copies. Equilibrium patterns have appeared multiple times during the evolution of seed plants, but selection does not favor these states. This framework for pattern development provides a route to rationalizing the surface textures of other secreted structures, such as cell walls and insect cuticle.


Assuntos
Parede Celular/metabolismo , Parede Celular/fisiologia , Pólen/metabolismo , Fenômenos Biofísicos/fisiologia , Membrana Celular/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas/genética , Microscopia Eletrônica de Transmissão/métodos , Morfogênese/fisiologia , Passiflora/metabolismo , Filogenia
4.
Cell ; 167(4): 1067-1078.e16, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773482

RESUMO

FOXP3+ regulatory T cells (Tregs) maintain tolerance against self-antigens and innocuous environmental antigens. However, it is still unknown whether Treg-mediated tolerance is antigen specific and how Treg specificity contributes to the selective loss of tolerance, as observed in human immunopathologies such as allergies. Here, we used antigen-reactive T cell enrichment to identify antigen-specific human Tregs. We demonstrate dominant Treg-mediated tolerance against particulate aeroallergens, such as pollen, house dust mites, and fungal spores. Surprisingly, we found no evidence of functional impairment of Treg responses in allergic donors. Rather, major allergenic proteins, known to rapidly dissociate from inhaled allergenic particles, have a generally reduced capability to generate Treg responses. Most strikingly, in individual allergic donors, Th2 cells and Tregs always target disparate proteins. Thus, our data highlight the importance of Treg antigen-specificity for tolerance in humans and identify antigen-specific escape from Treg control as an important mechanism enabling antigen-specific loss of tolerance in human allergy.


Assuntos
Hipersensibilidade/imunologia , Imunidade nas Mucosas , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologia , Alérgenos/imunologia , Autoantígenos/imunologia , Humanos , Memória Imunológica
5.
Plant Cell ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102899

RESUMO

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.

6.
Plant Cell ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635962

RESUMO

Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.

7.
Semin Immunol ; 67: 101765, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105834

RESUMO

Climate change is considered the greatest threat to global health. Greenhouse gases as well as global surface temperatures have increased causing more frequent and intense heat and cold waves, wildfires, floods, drought, altered rainfall patterns, hurricanes, thunderstorms, air pollution, and windstorms. These extreme weather events have direct and indirect effects on the immune system, leading to allergic disease due to exposure to pollen, molds, and other environmental pollutants. In this review, we will focus on immune mechanisms associated with allergy and asthma-related health risks induced by climate change events. We will review current understanding of the molecular and cellular mechanisms by which the changing environment mediates these effects.


Assuntos
Poluição do Ar , Asma , Mudança Climática , Hipersensibilidade , Asma/imunologia , Hipersensibilidade/imunologia , Sistema Imunitário , Desastres , Humanos , Animais
8.
EMBO Rep ; 25(6): 2529-2549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773320

RESUMO

In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óvulo Vegetal , Tubo Polínico , Transdução de Sinais , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Óvulo Vegetal/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fertilização
9.
Proc Natl Acad Sci U S A ; 120(49): e2314325120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011554

RESUMO

Accurate sensing and responding to physical microenvironment are crucial for cell function and survival, but the underlying molecular mechanisms remain elusive. Pollen tube (PT) provides a perfect single-cell model for studying mechanobiology since it's naturally subjected to complex mechanical instructions from the pistil during invasive growth. Recent reports have revealed discrepant PT behaviors between in vivo and flat, two-dimensional in vitro cultures. Here, we established the Stigma-style-transmitting tract (TT) Physical microenvironment Assay (SPA) to recapitulate pressure changes in the pistil. This biomimetic assay has enabled us to swiftly identify highly redundant genes, GEF8/9/11/12/13, as new regulators for maintaining PTs integrity during style-to-TT emergence. In contrast to normal growth on solid medium, SPA successfully phenocopied gef8/9/11/12/13 PT in vivo growth-arrest deficiency. Our results suggest the existence of distinct signaling pathways regulating in vivo and in vitro PT integrity maintenance, underscoring the necessity of faithfully mimicking the physical microenvironment for studying plant cell biology.


Assuntos
Tubo Polínico , Pólen , Tubo Polínico/metabolismo , Pólen/metabolismo , Flores/genética , Polinização , Fenótipo
10.
Plant J ; 119(2): 998-1013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761113

RESUMO

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Assuntos
Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Pólen/genética , Pólen/fisiologia , Pólen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação/fisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Mutação , Gotículas Lipídicas/metabolismo
11.
Plant J ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093617

RESUMO

Being a bona fide actin bundler, Arabidopsis villin5 (VLN5) plays a crucial role in regulating actin stability and organization within pollen tubes. Despite its significance, the precise mechanism through which VLN5 bundles actin filaments has remained elusive. Through meticulous deletion analysis, we have unveiled that the link between gelsolin repeat 6 (G6) and the headpiece domain (VHP), rather than VHP itself, is indispensable for VLN5-mediated actin bundling. Further refinement of this region has pinpointed a critical sequence spanning from Val763 to Ser823, essential for VLN5's actin-bundling activity. Notably, the absence of Val763-Ser823 in VLN5 results in decreased filamentous decoration within pollen tubes and a diminished ability to rescue actin bundling defects in vln2vln5 mutant pollen tubes compared to intact VLN5. Moreover, our findings highlight that the Val763-Ser823 sequence harbors a binding site for F-actin, suggesting that this linker-based F-actin binding site, in conjunction with the F-actin binding site localized in G1-G6, enables a single VLN5 to concurrently bind to two adjacent actin filaments. Therefore, our study unveils a novel mechanism by which VLN5 bundles actin filaments.

12.
Plant J ; 117(1): 212-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828913

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tubo Polínico/metabolismo , Pólen
13.
Plant J ; 119(3): 1643-1658, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761168

RESUMO

Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout. However, the existing pyridine nucleotides genetically encoded fluorescent biosensors are either sensitive to pH change or slow in dissociation rate. Herein, we employed the biosensors which generate readouts that are pH stable for in planta measurement of NADH/NAD+ ratio and NADPH level. We generated transgenic Arabidopsis lines that express these biosensors in plastid stroma and cytosol of whole plants and pollen tubes under the control of CaMV 35S and LAT52 promoters, respectively. These transgenic biosensor lines allow us to monitor real-time dynamic changes in NADH/NAD+ ratio and NADPH level in the plastids and cytosol of various plant tissues, including pollen tubes, root hairs, and mesophyll cells, using a variety of fluorescent instruments. We anticipate that these valuable transgenic lines may allow improvements in plant redox biology studies.


Assuntos
Arabidopsis , Técnicas Biossensoriais , NADP , NAD , Plantas Geneticamente Modificadas , Técnicas Biossensoriais/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , NADP/metabolismo , NAD/metabolismo , Citosol/metabolismo , Oxirredução , Plastídeos/metabolismo , Plastídeos/genética , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Concentração de Íons de Hidrogênio
14.
Plant J ; 119(2): 861-878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761097

RESUMO

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Assuntos
Citoesqueleto de Actina , Germinação , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Sinalização do Cálcio , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/genética , Temperatura Alta , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Liases Intramoleculares/metabolismo , Liases Intramoleculares/genética , Inositol/metabolismo , Inositol/análogos & derivados
15.
Plant Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922580

RESUMO

The intricate process of male gametophyte development in flowering plants is regulated by jasmonic acid (JA) signaling. JA signaling initiates with the activation of the basic-helix-loop-helix (bHLH) transcription factor (TF), MYC2, leading to the expression of numerous JA-responsive genes during stamen development and pollen maturation. However, the regulation of JA signaling during different stages of male gametophyte development remains less understood. This study focuses on the characterization of the plant ARID-HMG DNA-BINDING PROTEIN 15 (AtHMGB15), and its role in pollen development in Arabidopsis (Arabidopsis thaliana). Phenotypic characterization of a T-DNA insertion line (athmgb15-4) revealed delayed bolting, shorter siliques, and reduced seed set in mutant plants compared to the wildtype. Additionally, AtHMGB15 deletion resulted in defective pollen morphology, delayed pollen germination, aberrant pollen tube growth, and a higher percentage of non-viable pollen grains. Molecular analysis indicated the down-regulation of JA biosynthesis and signaling genes in the athmgb15-4 mutant. Quantitative analysis demonstrated that jasmonic acid and its derivatives were approximately tenfold lower in athmgb15-4 flowers. Exogenous application of methyl jasmonate could restore pollen morphology and germination, suggesting that the low JA content in athmgb15-4 impaired JA signaling during pollen development. Furthermore, our study revealed that AtHMGB15 physically interacts with MYC2 to form a transcription activation complex. This complex promotes the transcription of key JA signaling genes, the R2R3-MYB TFs MYB21 and MYB24, during stamen and pollen development. Collectively, our findings highlight the role of AtHMGB15 as a positive regulator of the JA pathway, controlling the spatiotemporal expression of key regulators involved in Arabidopsis stamen and pollen development.

16.
Plant Physiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991562

RESUMO

Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes and its down-regulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.

17.
Proc Natl Acad Sci U S A ; 119(22): e2201446119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609199

RESUMO

The surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.4, which are produced stage specifically by developing pollen grains. Tapetum-derived CIF precursors are processed by subtilases, triggering GSO-dependent tapetum activation. We show that the GSO receptors act from the middle layer, a tissue surrounding the tapetum and developing pollen. Three concentrically organized cell types, therefore, cooperate to coordinate pollen wall deposition through a multilateral molecular dialogue.


Assuntos
Flores , Pólen , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Pólen/metabolismo
18.
J Allergy Clin Immunol ; 153(3): 844-851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995860

RESUMO

BACKGROUND: Studies have linked daily pollen counts to respiratory allergic health outcomes, but few have considered allergen levels. OBJECTIVE: We sought to assess associations of grass pollen counts and grass allergen levels (Phl p 5) with respiratory allergic health symptoms in a panel of 93 adults with moderate-severe allergic rhinitis and daily asthma hospital admissions in London, United Kingdom. METHODS: Daily symptom and medication scores were collected from adult participants in an allergy clinical trial. Daily counts of asthma hospital admissions in the London general population were obtained from Hospital Episode Statistics data. Daily grass pollen counts were measured using a volumetric air sampler, and novel Phl p 5 levels were measured using a ChemVol High Volume Cascade Impactor and ELISA analyses (May through August). Associations between the 2 pollen variables and daily health scores (dichotomized based on within-person 75th percentiles) were assessed using generalized estimating equation logistic models and with asthma hospital admissions using Poisson regression models. RESULTS: Daily pollen counts and Phl p 5 levels were each positively associated with reporting a high combined symptom and medication health score in separate models. However, in mutually adjusted models including terms for both pollen counts and Phl p 5 levels, associations remained for Phl p 5 levels (odds ratio [95% CI]: 1.18 [1.12, 1.24]), but were heavily attenuated for pollen counts (odds ratio [95% CI]: 1.00 [0.93, 1.07]). Similar trends were not observed for asthma hospital admissions in London. CONCLUSIONS: Grass allergen (Phl p 5) levels are more consistently associated with allergic respiratory symptoms than grass pollen counts.


Assuntos
Asma , Rinite Alérgica Sazonal , Rinite Alérgica , Adulto , Humanos , Rinite Alérgica Sazonal/epidemiologia , Pólen , Alérgenos , Poaceae , Asma/epidemiologia , Proteínas de Plantas/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-38763171

RESUMO

BACKGROUND: Celery root is known to cause severe allergic reactions in patients sensitized to mugwort pollen. OBJECTIVE: We studied clinically well-characterized patients with celery allergy by IgE testing with a comprehensive panel of celery allergens to disentangle the molecular basis of what is known as the celery-mugwort syndrome. METHODS: Patients with suspected food allergy to celery underwent a standardized interview. Main inclusion criteria were a positive food challenge with celery or an unambiguous case history of severe anaphylaxis. IgE to celery allergens (rApi g 1.01, rApi g 1.02, rApi g 2, rApi g 4, nApi g 5, rApi g 6, rApi g 7) and to mugwort allergens (rArt v 1, rArt v 3, rArt v 4) were determined. IgE levels ≥0.35 kUA/L were regarded positive. RESULTS: Seventy-nine patients with allergy to celery were included. Thirty patients had mild oral or rhinoconjunctival symptoms, and 49 had systemic reactions. Sixty-eight percent had IgE to celery extract, 80% to birch pollen, and 77% to mugwort pollen. A combination of Api g 1.01, 1.02, 4, 5, and 7 increased the diagnostic sensitivity for celery allergy to 92%. The lipid transfer proteins Api g 2 and Api g 6 were not relevant in our celery-allergic population. IgE to Api g 7, detected in 52% of patients, correlated closely (r = 0.86) to Art v 1 from mugwort pollen. Eleven of 12 patients with monosensitization to Api g 7 were IgE negative to celery extract. The odds ratio for developing a severe anaphylactic reaction rather than only mild oral symptoms was about 6 times greater (odds ratio, 5.87; 95% confidence interval, 1.08-32.0; P = .0410) for Api g 7-sensitized versus -nonsensitized subjects. CONCLUSION: There is an urgent need for routine diagnostic tests to assess sensitization to Api g 7, not only to increase test sensitivity but also to identify patients at risk of a severe allergic reaction to celery.

20.
J Allergy Clin Immunol ; 153(6): 1586-1596.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513837

RESUMO

BACKGROUND: Cyclophilins are ubiquitous panallergens whose epidemiologic, diagnostic, and clinical relevance is largely unknown and whose sensitization is rarely examined in routine allergy practice. OBJECTIVE: We investigated the epidemiologic, diagnostic, and clinical relevance of cyclophilins in seasonal allergic rhinitis and its comorbidities. METHODS: We examined a random sample of 253 (25%) of 1263 Italian children with seasonal allergic rhinitis from the Panallergens in Pediatrics (PAN-PED) cohort with characterized disease phenotypes. Nested studies of sensitization prevalence, correlation, and allergen extract inhibition were performed in patients sensitized to birch pollen extract but lacking IgE to Bet v 1/2/4 (74/1263) or with highest serum level of IgE to Bet v 1 (26/1263); and in patients with sensitization to various extracts (ragweed, mugwort, pellitory, Plantago, and plane tree), but not to their respective major allergenic molecule, profilins, and polcalcins. IgE to cyclophilin was detected with recombinant Bet v 7, and extract inhibition tests were performed with the same rBet v 7. RESULTS: IgE to rBet v 7 was detected in 43 (17%) of 253 patients. It was associated with asthma (P < .028) and oral allergy syndrome (P < .017) in univariate but not multivariate analysis adjusted for IgE to profilins (Phl p 12), PR-10s (Bet v 1), and lipid transfer proteins (Pru p 3). IgE to rBet v 7 was also highly prevalent (47/74, 63%) among patients with unexplained sensitization to birch pollen extract. In patients with unexplained sensitization to ragweed, mugwort, pellitory, Plantago and plane tree pollen, the levels of IgE to those extracts correlated with the levels of IgE to rBet v 7, and they were also significantly inhibited by rBet v 7 (inhibition range 45%-74%). CONCLUSIONS: IgE sensitization to cyclophilin is frequent in pollen-allergic patients living in temperate areas and can produce "false" positive outcomes in skin prick and IgE tests to pollen extracts. Molecular diagnostic guidelines should include this panallergen family.


Assuntos
Alérgenos , Ciclofilinas , Imunoglobulina E , Pólen , Rinite Alérgica Sazonal , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Criança , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/epidemiologia , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/sangue , Masculino , Feminino , Ciclofilinas/imunologia , Alérgenos/imunologia , Pólen/imunologia , Adolescente , Pré-Escolar , Antígenos de Plantas/imunologia , Itália/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA