Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 265, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498113

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of polyhydroxyalkanoates (PHA) that exhibits numerous outstanding properties and is naturally synthesized and elaborately regulated in various microorganisms. However, the regulatory mechanism involving the specific regulator PhaR in Haloferax mediterranei, a major PHBV production model among Haloarchaea, is not well understood. In our previous study, we showed that deletion of the phosphoenolpyruvate (PEP) synthetase-like (pps-like) gene activates the cryptic phaC genes in H. mediterranei, resulting in enhanced PHBV accumulation. In this study, we demonstrated the specific function of the PPS-like protein as a negative regulator of phaR gene expression and PHBV synthesis. Chromatin immunoprecipitation (ChIP), in situ fluorescence reporting system, and in vitro electrophoretic mobility shift assay (EMSA) showed that the PPS-like protein can bind to the promoter region of phaRP. Computational modeling revealed a high structural similarity between the rifampin phosphotransferase (RPH) protein and the PPS-like protein, which has a conserved ATP-binding domain, a His domain, and a predicted DNA-binding domain. Key residues within this unique DNA-binding domain were subsequently validated through point mutation and functional evaluations. Based on these findings, we concluded that PPS-like protein, which we now renamed as PspR, has evolved into a repressor capable of regulating the key regulator PhaR, and thereby modulating PHBV synthesis. This regulatory network (PspR-PhaR) for PHA biosynthesis is likely widespread among haloarchaea, providing a novel approach to manipulate haloarchaea as a production platform for high-yielding PHA. KEY POINTS: • The repressive mechanism of a novel inhibitor PspR in the PHBV biosynthesis was demonstrated • PspR is widespread among the PHA accumulating haloarchaea • It is the first report of functional conversion from an enzyme to a trans-acting regulator in haloarchaea.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Hidroxibutiratos , DNA , Poliésteres/metabolismo
2.
J Environ Manage ; 356: 120522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493645

RESUMO

In the context of a circular bio-based economy, more public attention has been paid to the environmental sustainability of biodegradable bio-based plastics, particularly plastics produced using emerging biotechnologies, e.g. poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. However, this has not been thoroughly investigated in the literature. Therefore, this study aimed to address three aspects regarding the environmental impact of PHBV-based plastic: (i) the potential environmental benefits of scaling up pellet production from pilot to industrial scale and the environmental hotspots at each scale, (ii) the most favourable end-of-life (EOL) scenario for PHBV, and (iii) the environmental performance of PHBV compared to benchmark materials considering both the pellet production and EOL stages. Life cycle assessment (LCA) was implemented using Cumulative Exergy Extraction from the Natural Environment (CEENE) and Environmental Footprint (EF) methods. The results show that, firstly, when upscaling the PHBV pellet production from pilot to industrial scale, a significant environmental benefit can be achieved by reducing electricity and nutrient usage, together with the implementation of better practices such as recycling effluent for diluting feedstock. Moreover, from the circularity perspective, mechanical recycling might be the most favourable EOL scenario for short-life PHBV-based products, using the carbon neutrality approach, as the material remains recycled and hence environmental credits are achieved by substituting recyclates for virgin raw materials. Lastly, PHBV can be environmentally beneficial equal to or even to some extent greater than common bio- and fossil-based plastics produced with well-established technologies. Besides methodological choices, feedstock source and technology specifications (e.g. pure or mixed microbial cultures) were also identified as significant factors contributing to the variations in LCA of (bio)plastics; therefore, transparency in reporting these factors, along with consistency in implementing the methodologies, is crucial for conducting a meaningful comparative LCA.


Assuntos
Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres , Poli-Hidroxibutiratos , Biotecnologia
3.
Microb Cell Fact ; 22(1): 47, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899367

RESUMO

BACKGROUND: Microbially produced bioplastics are specially promising materials since they can be naturally synthesized and degraded, making its end-of-life management more amenable to the environment. A prominent example of these new materials are polyhydroxyalkanoates. These polyesters serve manly as carbon and energy storage and increase the resistance to stress. Their synthesis can also work as an electron sink for the regeneration of oxidized cofactors. In terms of biotechnological applications, the co-polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), or PHBV, has interesting biotechnological properties due to its lower stiffness and fragility compared to the homopolymer poly(3-hydroxybutyrate) (P3HB). In this work, we explored the potentiality of Rhodospirillum rubrum as a producer of this co-polymer, exploiting its metabolic versatility when grown in different aeration conditions and photoheterotrophically. RESULTS: When shaken flasks experiments were carried out with limited aeration using fructose as carbon source, PHBV production was triggered reaching 29 ± 2% CDW of polymer accumulation with a 75 ± 1%mol of 3-hydroxyvalerate (3HV) (condition C2). Propionate and acetate were secreted in this condition. The synthesis of PHBV was exclusively carried out by the PHA synthase PhaC2. Interestingly, transcription of cbbM coding RuBisCO, the key enzyme of the Calvin-Benson-Bassham cycle, was similar in aerobic and microaerobic/anaerobic cultures. The maximal PHBV yield (81% CDW with 86%mol 3HV) was achieved when cells were transferred from aerobic to anaerobic conditions and controlling the CO2 concentration by adding bicarbonate to the culture. In these conditions, the cells behaved like resting cells, since polymer accumulation prevailed over residual biomass formation. In the absence of bicarbonate, cells could not adapt to an anaerobic environment in the studied lapse. CONCLUSIONS: We found that two-phase growth (aerobic-anaerobic) significantly improved the previous report of PHBV production in purple nonsulfur bacteria, maximizing the polymer accumulation at the expense of other components of the biomass. The presence of CO2 is key in this process demonstrating the involvement of the Calvin-Benson-Bassham in the adaptation to changes in oxygen availability. These results stand R. rubrum as a promising producer of high-3HV-content PHBV co-polymer from fructose, a PHBV unrelated carbon source.


Assuntos
Dióxido de Carbono , Rhodospirillum rubrum , Rhodospirillum rubrum/metabolismo , Anaerobiose , Bicarbonatos , Poliésteres/metabolismo , Hidroxibutiratos
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769266

RESUMO

As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.


Assuntos
Anti-Infecciosos , Poliésteres , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Polímeros , Biopolímeros/uso terapêutico
5.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511432

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable and biocompatible biopolymer that has gained popularity in the field of biomedicine. This review provides an overview of recent advances and potential applications of PHBV, with special emphasis on drug encapsulation and scaffold construction. PHBV has shown to be a versatile platform for drug delivery, offering controlled release, enhanced therapeutic efficacy, and reduced side effects. The encapsulation of various drugs, such as anticancer agents, antibiotics, and anti-inflammatory drugs, in PHBV nanoparticles or microspheres has been extensively investigated, demonstrating enhanced drug stability, prolonged release kinetics, and increased bioavailability. Additionally, PHBV has been used as a scaffold material for tissue engineering applications, such as bone, cartilage, and skin regeneration. The incorporation of PHBV into scaffolds has been shown to improve mechanical properties, biocompatibility, and cellular interactions, making them suitable for tissue engineering constructs. This review highlights the potential of PHBV in drug encapsulation and scaffold fabrication, showing its promising role in advancing biomedical applications.


Assuntos
Poliésteres , Alicerces Teciduais , Preparações Farmacêuticas , Engenharia Tecidual
6.
J Environ Manage ; 331: 117300, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657207

RESUMO

Waste activated sludge has been frequently used as mixed substrate to produce polyhydroxyalkanoate (PHA). However, insufficient research on microbial metabolism has led to difficulties in regulating PHA accumulation in mixed microbial cultures (MMCs). To explore the variation of functional genes during domestication and the effect of different pH conditions on metabolic pathways during PHA accumulation, MMCs were domesticated by adding acetate and propionate with aerobic dynamic feeding strategy for 60 days. As the domestication progressed, the microbial community diversity declined and PHA-producing bacteria, Brevundimonas, Dechloromonas and Hyphomonas, were enriched. Through bacterial function prediction by PICRUSt the gene rpoE involved in starvation resistance of bacteria was enriched after the domestication. The pH value of 8.5 was the best condition for PHA accumulation in MMCs, under which a maximum PHA content reached 23.50% and hydroxybutyric (HB)/hydroxyvaleric (HV) reached 2.22. Untargeted metabolomics analysis exhibited that pH conditions of 7 and 8.5 could promote the up-regulation of significant differential metabolites, while higher alkaline conditions caused the inhibition of metabolic activity. Functional annotation showed that pH condition of 8.5 significantly affected Pyrimidine metabolism, resulting in an increase in PHA production. Regarding the pathways of PHA biosynthesis, acetoacetate was found to be significant in the metabolism of hydroxybutyric, and the alkaline condition could restrain the conversion from hydroxybutyric (HB) to the acetoacetate to protect PHB accumulation in MMCs compared with neutral condition. Taken together, the present results can advance the fundamental understanding of metabolic function in PHA accumulation under different pH conditions.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Esgotos/química , Acetoacetatos/metabolismo , Metabolômica , Bactérias/genética , Concentração de Íons de Hidrogênio , Reatores Biológicos/microbiologia
7.
Environ Res ; 214(Pt 3): 114001, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934144

RESUMO

Polyhydroxyalkanoates (PHA), especially poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is considered as the most suitable candidate to replace petrochemical plastics. However, the high production cost and the composition of the monomers in the copolymer are the major constraints in production. The 3-hydroxyvalerate (3HV) rich copolymers are ideal for various applications due to their lower melting points, improved elasticity, and ductility. Haloferax mediterranei is a suitable microorganism for the production of biopolymer PHBV from biowaste. Nevertheless, the potential of H. mediterranei cultivated on food waste as sustainable substrate and levulinic acid as an inducer has not been explored for PHBV production. This study aims at the valorization of food waste as low-cost substrate and evaluation of effect of levulinic acid in the production and composition of PHBV using H. mediterranei. Shake-flask fermentations using different concentrations of salt, glucose and levulinic acid were first performed to optimize the cultivation conditions. The highest growth of the halophile was observed at salt concentration of 15% and glucose of concentration 10 g/L. Under optimized growth conditions, H. mediterranei was cultivated for PHBV production in fed-batch bioreactor with pulse fed levulinic acid. The maximum biomass of 3.19 ± 0.66 g/L was achieved after 140 h of cultivation with 3 g/L of levulinic acid. A decrease in H. mediterranei growth was noticed with the increase in levulinic acid concentration in the range of 3-10 g/L. The overall yield of PHBV at 3, 5, 7 and 10 g/L of levulinic acid were 18.23%, 56.70%, 31.54%, 21.29%, respectively. The optimum concentration of 5 g/L of levulinic acid was found to produce the maximum yield of 56.70% PHBV with 18.55 mol% 3HV content. A correlation between levulinic acid concentrations and PHBV production established in this study can serve as an important reference for future large-scale production.


Assuntos
Haloferax mediterranei , Poli-Hidroxialcanoatos , Eliminação de Resíduos , Alimentos , Glucose , Ácidos Levulínicos , Poliésteres/química , Poli-Hidroxialcanoatos/química
8.
Environ Res ; 215(Pt 1): 114323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115419

RESUMO

Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.


Assuntos
COVID-19 , Cupriavidus necator , Resíduos de Serviços de Saúde , Eliminação de Resíduos , Biopolímeros , Cupriavidus necator/metabolismo , Fermentação , Alimentos , Combustíveis Fósseis , Humanos , Hidroxibutiratos , Ácidos Pentanoicos , Plásticos , Poliésteres , Valeratos
9.
Luminescence ; 37(2): 323-331, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871472

RESUMO

There have been strong demands for nanofibrous scaffolds fabricated by electrospinning for various fields due to their various advantages. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibre mats were prepared. The effects of processing variables as well as the inclusion of poly(ethylene glycol) (PEG) on the morphologies of generated fibres were investigated using Fourier-transform infrared spectroscopy and scanning electron microscopy. The average fibrous diameter was monitored in the range 400-3000 nm relying on the total content of PEG. The fluorescence cell imaging of electrospun mats was also explored. The results of cell viability demonstrated that skin fibroblast BJ-1 cells showed different adhesions and growth rates for the three kinds of PHBV fibres. Electrospun PHBV mats with low amount of PEG offer a high-quality medium for cell growth. Therefore, those mats exhibited high potential for soft tissue engineering, in particular wound healing.


Assuntos
Nanofibras , Engenharia Tecidual , Ácido 3-Hidroxibutírico , Proliferação de Células , Hidroxibutiratos , Poliésteres , Polietilenoglicóis
10.
Bioprocess Biosyst Eng ; 45(8): 1331-1347, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35792928

RESUMO

The domination of high-cost organic acids over other 3-hydroxyvalerate (3HV) precursors due to the wide preference among polyhydroxyalkanoates (PHA)-producing bacteria has limited the development of diverse poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production processes. 1-pentanol is a low-cost 3HV precursor but is rarely employed due to the relatively low tolerance among PHA-producing bacteria. This study demonstrated P(3HB-co-3HV) production with manipulable and reproducible 3HV composition and 3HV yield from palm olein and 1-pentanol. Cupriavidus malaysiensis USMAA2-4ABH16 is the transformant strain with acquired lipase genes that retains the high tolerance towards 1-pentanol of its wild-type, with a preference for 1-pentanol over valeric acid indicated by the sixfold higher 3HV yield than that from valeric acid. C. malaysiensis USMAA2-4ABH16 was able to tolerate up to 0.15 wt% C 1-pentanol. Upon optimization using response surface methodology, 0.41‒0.52 g/g P(3HB-co-3HV) yield and 72‒89 wt% PHA content was achieved for 7, 9, 12 and 16 mol% 3HV, with 3HV yields of 0.30 g/g, 0.26 g/g, 0.23 g/g and 0.23 g/g, respectively. Up-scaling batch production by adopting the optimized concentrations of substrates for 12 mol% 3HV resulted in reproducible 3HV composition and 3HV yield on a 120-fold larger scale. The P(3HB-co-12 mol% 3HV) produced displayed higher flexibility than polypropylene and P(3HB-co-3HV) produced from different carbon sources. C. malaysiensis USMAA2-4ABH16 could be practically applicable for sustainable and economically feasible P(3HB-co-3HV) production on an industrial scale from used palm olein with relatively similar oleic acid content with palm olein and 1-pentanol, with higher 3HV compositions achievable through fed-batch strategies owing to its high 1-pentanol tolerance.


Assuntos
Cupriavidus necator , Cupriavidus , Poli-Hidroxialcanoatos , Carbono , Etanol , Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres/química
11.
Sci Technol Adv Mater ; 23(1): 895-910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570876

RESUMO

The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .

12.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409254

RESUMO

Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.


Assuntos
Poliésteres , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Hidroxibutiratos , Camundongos , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
Mol Pharm ; 18(11): 4170-4178, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582196

RESUMO

Tailing off release in the sustained release of water-insoluble curcumin (Cur) is a significant challenge in the drug delivery system. As a novel solution, core-shell nanodrug containers have aroused many interests due to their potential improvement in drug-sustained release. In this work, a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and hydrophilic polyvinylpyrrolidone (PVP) were exploited as drug delivery carriers by coaxial electrospinning, and the core-shell drug-loaded fibers exhibited improved sustained release of Cur. A cylindrical morphology and a clear core-shell structure were observed by scanning and transmission electron microscopies. The X-ray diffraction pattern and infrared spectroscopy revealed that Cur existed in amorphous form due to its good compatibility with PHBV and PVP. The in vitro drug release curves confirmed that the core-shell container manipulated Cur in a faster drug release process than that in the traditional PHBV monolithic container. The combination of the material and structure forms a novel nanodrug container with a better sustained release of water-insoluble Cur. This strategy is beneficial for exploiting more functional biomedical materials to improve the drug release behavior.


Assuntos
Curcumina/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Curcumina/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Poliésteres/química , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Appl Microbiol Biotechnol ; 105(18): 6679-6689, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34459953

RESUMO

A series of culture media for haloarchaea were evaluated to optimize the production of ultrahigh-molecular-weight (UHMW) poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei. Cells of H. mediterranei grew (> 1 g/L of dry cell weight) and accumulated PHBV upon flask cultivation in 10 medium types with neutral pH and NaCl concentration > 100 g/L. Molecular weight and compositional analysis revealed that the number-average molecular weight (Mn) of PHBV produced with six selected types of media ranged from 0.8 to 3.5 × 106 g/mol and the 3-hydroxyvalerate (3HV) composition ranged from 8 to 36 mol%. Cultivation in two NBRC media, 1214 and 1380, resulted in the production of PHBV with an Mn of more than 3.0 × 106 g/mol and a weight-average molecular weight of more than 5.0 × 106 g/mol, indicating the production of UHMW-PHBV. These culture media contained small amount of complex nutrients like yeast extract and casamino acids, suggesting that H. mediterranei likely produced UHMW-PHBV on poor nutrient condition. Haloferax mediterranei grown in NBRC medium 1380 produced PHBV with the highest 3HV composition. A solvent-cast film of UHMW-PHBV with 26.4 mol% 3HV produced from 1-L flask cultivation with NBRC medium 1380 was found to be flexible and semi-transparent. Thermal analysis of the UHMW-PHBV cast film revealed melting and glass-transition temperatures of 90.5 °C and - 2.7 °C, respectively. KEY POINTS: • Haloarchaeal culture media were evaluated to produce UHMW-PHBV by H. mediterranei. • UHMW-PHBV with varied molecular weight was produced dependent on culture media. • Semi-transparent film could be made from UHMW-PHBV with 26.4 mol% 3HV.


Assuntos
Haloferax mediterranei , Poli-Hidroxialcanoatos , Meios de Cultura , Peso Molecular , Poliésteres
15.
Appl Microbiol Biotechnol ; 105(4): 1435-1446, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484319

RESUMO

In this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions. We used our previously derived propanologenic (i.e., 1-propanol-producing) E. coli strain with an activated genomic Sleeping beauty mutase (Sbm) operon as a host for heterologous expression of the phaCAB operon. The 3-HV monomeric fraction was modulated by regulating dissimilated carbon flux channeling from the tricarboxylic acid (TCA) cycle into the Sbm pathway for biosynthesis of propionyl-CoA, which is a key precursor to (R)-3-hydroxyvaleryl-CoA (3-HV-CoA) monomer. The carbon flux channeling was regulated either by manipulating a selection of genes involved in the TCA cycle or varying oxygenic condition of the bacterial culture. With these consolidated strategies being implemented, we successfully achieved high-level PHBV biosynthesis with a wide range of 3-HV monomeric fraction from ~ 4 to 50 mol%, potentially enabling the fine-tuning of PHBV mechanical properties at the biosynthesis stage. We envision that similar strategies can be applied to enhance bio-based production of chemicals derived from succinyl-CoA. KEY POINTS: • TCA cycle engineering was applied to enhance 3-HV monomeric fraction in E. coli. • Effects of oxygenic conditions on 3-HV incorporation into PHBV in E. coli were investigated. • Bacterial cultivation for high-level PHBV production in engineered E. coli was performed.


Assuntos
Escherichia coli , Hidroxibutiratos , Escherichia coli/genética , Ácidos Pentanoicos , Poliésteres
16.
Bioprocess Biosyst Eng ; 44(2): 403-416, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32995978

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracellular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition. PHA production was performed in a controlled bioreactor by batch and fed-batch modes using wild-type B. megaterium and rec-B. megaterium cells overexpressing the native phaC gene. The effect of oxygen transfer rate on biomass formation and PHA accumulation was also investigated, under different dissolved oxygen levels. Structural and thermal properties of PHA were characterized by GC-FID, 1H-NMR, TGA and DSC analyses. Significantly, the copolymer produced from glucose as the carbon source in rec-B. megaterium was composed of 58 mol% of 3-hydroxyvalerate monomers. After 66 h, rec-B. megaterium cells in fed-batch fermentation with a pre-determined growth rate µ0 = 0.1 h-1 produced the highest CDW (7.7 g L-1) and PHA concentration (6.1 g L-1). Moreover, an exponential glucose feeding profile resulted in 2.2-fold increase in PHA yield compared to batch cultivation. Overall, this study paves the way to an enhanced biopolymer production process in B. megaterium cells, where the highest product yield on cell was obtained as YP/X = 0.8 g g-1.


Assuntos
Bacillus megaterium , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Microrganismos Geneticamente Modificados , Poliésteres/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento
17.
Molecules ; 26(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684864

RESUMO

Vibrio alginolyticus is a halophilic organism usually found in marine environments. It has attracted attention as an opportunistic pathogen of aquatic animals and humans, but there are very few reports on polyhydroxyalkanoate (PHA) production using V. alginolyticus as the host. In this study, two V. alginolyticus strains, LHF01 and LHF02, isolated from water samples collected from salt fields were found to produce poly(3-hydroxybutyrate) (PHB) from a variety of sugars and organic acids. Glycerol was the best carbon source and yielded the highest PHB titer in both strains. Further optimization of the NaCl concentration and culture temperature improved the PHB titer from 1.87 to 5.08 g/L in V. alginolyticus LHF01. In addition, the use of propionate as a secondary carbon source resulted in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). V. alginolyticus LHF01 may be a promising host for PHA production using cheap waste glycerol from biodiesel refining.


Assuntos
Poli-Hidroxialcanoatos/biossíntese , Vibrio alginolyticus/metabolismo , Carbono/metabolismo , China , Fermentação , Proibitinas , Águas Salinas , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/ultraestrutura
18.
Appl Microbiol Biotechnol ; 104(22): 9759-9771, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918583

RESUMO

Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) producing haloarchaeon, possesses four PHA synthase encoding genes, phaC, phaC1, phaC2, and phaC3. In the wild-type strain, except phaC, the other three genes are cryptic and not transcribed under PHA-accumulating conditions. The PhaC protein together with PhaE subunit forms the active PHA synthase and catalyzes PHBV polymerization. Previously, it was observed that the deletion of a gene named pps-like significantly enhanced PHBV accumulation probably resulted from the upregulation of pha cluster genes (phaR-phaP-phaE-phaC). The present study demonstrated the influence of pps-like gene deletion on the cryptic phaC genes. As revealed by qRT-PCR, the expression level of the three cryptic genes was upregulated in the ΔEPSΔpps-like geneΔphaC mutant. Sequential knockout of the cryptic phaC genes and fermentation experiments showed that PhaC1 followed by PhaC3 had the ability to synthesize PHBV in ΔEPSΔpps-like geneΔphaC mutant. Both PhaC1 and PhaC3 could complex with PhaE to form functionally active PHA synthase. However, the expression of phaC2 did not lead to PHBV synthesis. Moreover, PhaC, PhaC1, and PhaC3 exhibited distinct substrate specificity as the 3HV content in PHBV copolymers was different. The EMSA result showed that PPS-like protein might be a negative regulator of phaC1 gene by binding to its promoter region. Taken together, PhaC1 had the most pronounced effect on PHBV synthesis in ΔEPSΔpps-like geneΔphaC mutant and deletion of pps-like gene released the negative effect from phaC1 expression and thereby restored PHBV accumulating ability in ΔphaC mutant. KEY POINTS: • Cryptic phaC genes were activated by pps-like gene deletion. • PPS-like protein probably regulated phaC1 expression by binding to its promoter. • Both PhaC1 and PhaC3 formed active PHA synthase with PhaE.


Assuntos
Deleção de Genes , Haloferax mediterranei , Aciltransferases/genética , Haloferax mediterranei/genética , Hidroxibutiratos , Poliésteres
19.
Bioprocess Biosyst Eng ; 43(8): 1469-1478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266468

RESUMO

In the present study, the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Azotobacter vinelandii was evaluated in shake flasks and bioreactors, utilizing different precursors and oxygen transfer rates (OTRs). In shake flask cultures, the highest PHBV yield from sucrose (0.16 g g-1) and 3-hydroxyvalerate (3HV) fraction in the PHA chain (27.4 mol%) were obtained with valerate (1.0 g L-1). In the bioreactor, the cultures were grown under oxygen-limited conditions, and the maximum OTR (OTRmax) was varied by adjusting the agitation rate. In the cultures grown at low OTRmax (4.3 mmol L-1 h-1), the intracellular content of PHBV (73% w w-1) was improved, whereas a maximum 3HV fraction (35 mol %) was obtained when a higher OTRmax (17.2 mmol L-1 h-1, to 600 rpm) was employed. The findings obtained suggest that the PHBV production and the content of 3HV incorporated into the polymer were affected by the OTR. Based on the evidence, it is possible to produce PHBV with a different composition by varying the OTR of the culture; thus, the approach in this study could be used to scale up PHBV production.


Assuntos
Azotobacter vinelandii/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Poliésteres/metabolismo
20.
Pharm Dev Technol ; 25(2): 206-218, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31648589

RESUMO

5-Fluorouracil (5-FU) is one of the most widely used agents in the first-line chemotherapy for colon cancer. However, clinical use of 5-FU is limited because of the low efficacy of drug uptake and systemic toxic effects. Therefore, there is a critical need to find better drug delivery systems in order to improve the efficacy of the drug. In the present study, we have developed a novel combination drug delivery system based on PHBV/PLGA NPs for delivery of 5-FU to cancer cells. NPs were prepared by the double emulsion method and their optimization of preparation was evaluated using Box-Behnken design (BBD) of response surface methodology (RSM). 5-FU loaded NPs were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and Fourier transformed infra-red spectroscopy (FT-IR). SEM image implied that NPs were spherical in shape and the results of DSC, TGA, and FT-IR suggest that 5-FU was encapsulated into NPs. The obtained results revealed that 5-FU loaded PHBV/PLGA NPs induced significant higher cell death at concentration much lower than free 5-FU. Results of hemolysis assay indicated that the NPs were hemo-compatible. In vivo anti-tumor studies showed that 5-FU loaded NPs reduced tumor volume significantly in comparison with free 5-FU. As the first example of using PHBV/PLGA as nano-drug delivery system with enhanced anti-tumor activities, this study establishes PHBV/PLGA as a novel promising drug delivery platform for treatment of colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fluoruracila/química , Fluoruracila/farmacologia , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA