Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.585
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552624

RESUMO

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Assuntos
Chlamydomonas reinhardtii , Cílios , Glicoproteínas , Cílios/química , Glicoproteínas/química , Glicosilação , Hidroxiprolina/química , Plantas/metabolismo , Chlamydomonas reinhardtii/química
2.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768895

RESUMO

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Microscopia Crioeletrônica , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Mutação de Sentido Incorreto , Nanoestruturas/química , Rim Policístico Autossômico Dominante/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Canais de Cátion TRPP/genética
3.
Trends Biochem Sci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851904

RESUMO

Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca2+-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.

4.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483987

RESUMO

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Assuntos
Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Canais de Cátion TRPP/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Canais Iônicos
5.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763973

RESUMO

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Assuntos
Canais de Cátion TRPP , Humanos , Cálcio/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo
6.
J Biol Chem ; : 107574, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009345

RESUMO

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as homotetramer. We investigated whether three disease-associated mutations (F629S, C632R or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wildtype (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed, when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15 %) and R638C (∼30 %). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

7.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35896117

RESUMO

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Cistos/genética , Fibrose , Humanos , Rim/patologia , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Sequenciamento do Exoma
8.
Am J Hum Genet ; 109(1): 136-156, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34890546

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.


Assuntos
Alelos , Proteínas de Transporte , Predisposição Genética para Doença , Mutação , Rim Policístico Autossômico Dominante/genética , Adulto , Idoso , Substituição de Aminoácidos , Bancos de Espécimes Biológicos , Cílios/patologia , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Rim Policístico Autossômico Dominante/diagnóstico , Análise de Sequência de DNA , Reino Unido , Sequenciamento do Exoma
9.
Genes Cells ; 29(7): 599-607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782708

RESUMO

WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.


Assuntos
Mutação , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Humanos , Linhagem Celular , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Polimorfismo de Nucleotídeo Único , Variações do Número de Cópias de DNA
10.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158562

RESUMO

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Assuntos
Canais de Cátion TRPP , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Canais de Cátion TRPP/química , Transdução de Sinais , Transporte de Íons , Canais de Potencial de Receptor Transitório/genética , Mutação , Receptores de Superfície Celular/metabolismo , Canais de Cálcio/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(30): e2121267119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867829

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.


Assuntos
Cloridrato de Fingolimode , Rim Policístico Autossômico Dominante , Proteína Quinase C , Animais , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Humanos , Camundongos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/enzimologia , Proteína Quinase C/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
12.
J Biol Chem ; 299(9): 105158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579949

RESUMO

Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.


Assuntos
Doenças Mitocondriais , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Animais , Camundongos , Estresse Oxidativo , Rim Policístico Autossômico Dominante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
13.
Kidney Int ; 105(4): 731-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158181

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Humanos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Inflamação/genética , Inflamação/complicações , Rim/metabolismo , Cistos/complicações , Interleucinas , Interferons
14.
J Gene Med ; 26(2): e3674, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404150

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS: This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS: miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS: The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.


Assuntos
Vesículas Extracelulares , MicroRNAs , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Estudos Transversais , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Forminas
15.
Am J Kidney Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608748

RESUMO

RATIONALE & OBJECTIVE: Body mass index (BMI) is an independent predictor of kidney disease progression in individuals with autosomal dominant polycystic kidney disease (ADPKD). Adipocytes do not simply act as a fat reservoir but are active endocrine organs. We hypothesized that greater visceral abdominal adiposity would associate with more rapid kidney growth in ADPKD and influence the efficacy of tolvaptan. STUDY DESIGN: A retrospective cohort study. SETTING & PARTICIPANTS: 1,053 patients enrolled in the TEMPO 3:4 tolvaptan trial with ADPKD and at high risk of rapid disease progression. PREDICTOR: Estimates of visceral adiposity extracted from coronal plane magnetic resonance imaging (MRI) scans using deep learning. OUTCOME: Annual change in total kidney volume (TKV) and effect of tolvaptan on kidney growth. ANALYTICAL APPROACH: Multinomial logistic regression and linear mixed models. RESULTS: In fully adjusted models, the highest tertile of visceral adiposity was associated with greater odds of annual change in TKV of≥7% versus<5% (odds ratio [OR], 4.78 [95% CI, 3.03-7.47]). The association was stronger in women than men (interaction P<0.01). In linear mixed models with an outcome of percent change in TKV per year, tolvaptan efficacy (% change in TKV) was reduced with higher visceral adiposity (3-way interaction of treatment ∗ time ∗ visceral adiposity, P=0.002). Visceral adiposity significantly improved classification performance of predicting rapid annual percent change in TKV for individuals with a normal BMI (DeLong's test z score: -2.03; P=0.04). Greater visceral adiposity was not associated with estimated glomerular filtration rate (eGFR) slope in the overall cohort; however, visceral adiposity was associated with more rapid decline in eGFR slope (below the median) in women (fully adjusted OR, 1.06 [95% CI, 1.01-1.11] per 10 unit increase in visceral adiposity) but not men (OR, 0.98 [95% CI, 0.95-1.02]). LIMITATIONS: Retrospective; rapid progressors; computational demand of deep learning. CONCLUSIONS: Visceral adiposity that can be quantified by MRI in the coronal plane using a deep learning segmentation model independently associates with more rapid kidney growth and improves classification of rapid progression in individuals with a normal BMI. Tolvaptan efficacy decreases with increasing visceral adiposity. PLAIN-LANGUAGE SUMMARY: We analyzed images from a previous study with the drug tolvaptan conducted in patients with autosomal dominant polycystic kidney disease (ADPKD) to measure the amount of fat tissue surrounding the kidneys (visceral fat). We had previously shown body mass index can predict kidney growth in this population; now we determined whether visceral fat was an important factor associated with kidney growth. Using a machine learning tool to automate measurement of fat in images, we observed that visceral fat was independently associated with kidney growth, that it was a better predictor of faster kidney growth in lean patients than body mass index, and that having more visceral fat made treatment of ADPKD with tolvaptan less effective.

16.
Am J Kidney Dis ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621633

RESUMO

RATIONALE & OBJECTIVE: In this pilot study, we hypothesized that autosomal dominant polycystic kidney disease (ADPKD) is characterized by impaired kidney oxidative metabolism that associates with kidney size and cyst burden. STUDY DESIGN: Cross-sectional study. SETTING & PARTICIPANTS: Twenty adults with ADPKD (age, 31±6 years; 65% women; body mass index [BMI], 26.8 [22.7-30.4] kg/m2; estimated glomerular filtration rate [eGFR, 2021 CKD-EPI creatinine], 103±18mL/min/1.73m2; height-adjusted total kidney volume [HTKV], 731±370mL/m; Mayo classifications 1B [5%], 1C [42%], 1D [21%], and 1E [32%]) and 11 controls in normal weight category (NWC) (age, 25±3 years; 45% women; BMI, 22.5 [21.7-24.2] kg/m2; eGFR, 113±15mL/min/1.73m2; HTKV, 159±31mL/m) at the University of Colorado Anschutz Medical Campus. PREDICTORS: ADPKD status (yes/no) and severity (Mayo classifications). OUTCOME: HTKV and cyst burden by magnetic resonance imaging, kidney oxidative metabolism, and perfusion by 11C-acetate positron emission tomography/computed tomography, insulin sensitivity by hyperinsulinemic-euglycemic clamps (presented as ratio of M-value of steady state insulin concentration [M/I]). ANALYTICAL APPROACH: For categorical variables, χ2/Fisher's exact tests, and for continuous variables t tests/Mann-Whitney U tests. Pearson correlation was used to estimate the relationships between variables. RESULTS: Compared with NWC individuals, the participants with ADPKD exhibited lower mean±SD M/I ratio (0.586±0.205 vs 0.424±0.171 [mg/kg lean/min]/(µIU/mL), P=0.04), lower median cortical perfusion (1.93 [IQR, 1.80-2.09] vs 0.68 [IQR, 0.47-1.04] mL/min/g, P<0.001) and lower median total kidney oxidative metabolism (0.17 [IQR, 0.16-0.19] vs. 0.14 [IQR, 0.12-0.15] min-1, P=0.001) in voxel-wise models excluding cysts. HTKV correlated inversely with cortical perfusion (r: -0.83, P < 0.001), total kidney oxidative metabolism (r: -0.61, P<0.001) and M/I (r: -0.41, P = 0.03). LIMITATIONS: Small sample size and cross-sectional design. CONCLUSIONS: Adults with ADPKD and preserved kidney function exhibited impaired renal perfusion and kidney oxidative metabolism across a wide range of cysts and kidney enlargements. FUNDING: Grants from government (National Institutes of Health, Centers for Disease Control and Prevention) and not-for-profit (JDRF) entities. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study numbers NCT04407481 and NCT04074668. PLAIN-LANGUAGE SUMMARY: In our study, we explored how a common genetic kidney condition, autosomal dominant polycystic kidney disease (ADPKD), relates to kidney metabolism. ADPKD leads to the growth of numerous cysts in the kidneys, which can impact their ability to work properly. We wanted to understand the kidneys' ability to process oxygen and blood flow in ADPKD. Our approach involved using advanced imaging techniques to observe kidney metabolism and blood flow in people with ADPKD compared with healthy individuals. We discovered that those with ADPKD had significant changes in kidney oxygen metabolism even when their kidney function was still normal. These findings are crucial as they provide deeper insights into ADPKD, potentially guiding future treatments to target these changes.

17.
Am J Kidney Dis ; 83(2): 260-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734686

RESUMO

A 68-year-old woman being treated with hemodialysis for autosomal dominant polycystic kidney disease was admitted for progressive dyspnea over 6 months. On chest radiography, her cardiothoracic ratio had increased from 52.2% 6 months prior, to 71%, and echocardiography revealed diffuse pericardial effusion and right ventricular diastolic insufficiency. A resultant pericardial tamponade was thought to be the cause of the patient's dyspnea, and therefore a pericardiocentesis was performed, with a total of 2,000mL of fluid removed. However, 21 days later the same amount of pericardial fluid had reaccumulated. The second pericardiocentesis was performed, followed by transcatheter renal artery embolization (TAE). The kidneys, which were hard on palpation before TAE, softened immediately after TAE. After resolution of the pericardial effusion was confirmed, the patient was discharged after 24 days in hospital. Twelve months later, the patient was asymptomatic, the cardiothoracic ratio decreased to 48% on chest radiography and computed tomography revealed no reaccumulation of pericardial effusion. This case illustrates a potential relationship between enlarged kidneys in autosomal dominant polycystic kidney disease and pericardial effusion.


Assuntos
Derrame Pericárdico , Rim Policístico Autossômico Dominante , Feminino , Humanos , Idoso , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/terapia , Artéria Renal , Derrame Pericárdico/diagnóstico por imagem , Derrame Pericárdico/etiologia , Derrame Pericárdico/terapia , Rim , Dispneia/complicações
18.
Am J Nephrol ; 55(3): 380-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194940

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disease characterized by the accumulation of fluid-filled cysts in the kidneys, leading to renal volume enlargement and progressive kidney function impairment. Disease severity, though, may vary due to allelic and genetic heterogeneity. This study aimed to determine genotype-phenotype correlations between PKD1 truncating and non-truncating mutations and kidney function decline in ADPKD patients. METHODS: We established a single-center retrospective cohort study in Kuwait where we followed every patient with a confirmed PKD1-ADPKD diagnosis clinically and genetically. Renal function tests were performed annually. We fitted generalized additive mixed effects models with random intercepts for each individual to analyze repeated measures of kidney function across mutation type. We then calculated survival time to kidney failure in a cox proportional hazards model. Models were adjusted for sex, age at visit, and birth year. RESULTS: The study included 22 truncating and 20 non-truncating (42 total) patients followed for an average of 6.6 years (range: 1-12 years). Those with PKD1 truncating mutations had a more rapid rate of eGFR decline (-4.7 mL/min/1.73 m2 per year; 95% CI: -5.0, -4.4) compared to patients with PKD1 non-truncating mutations (-3.5 mL/min/1.73 m2 per year; 95% CI: -4.0, -3.1) (p for interaction <0.001). Kaplan-Meier survival analysis of time to kidney failure showed that patients with PKD1 truncating mutations had a shorter renal survival time (median 51 years) compared to those with non-truncating mutations (median 56 years) (P for log-rank = 0.008). CONCLUSION: In longitudinal and survival analyses, patients with PKD1 truncating mutations showed a faster decline in kidney function compared to patients PKD1 non-truncating mutations. Early identification of patients with PKD1 truncating mutations can, at best, inform early clinical interventions or, at least, help suggest aggressive monitoring.


Assuntos
Taxa de Filtração Glomerular , Mutação , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/fisiopatologia , Feminino , Masculino , Canais de Cátion TRPP/genética , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Progressão da Doença , Estudos de Associação Genética , Kuweit/epidemiologia
19.
FASEB J ; 37(7): e23006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249915

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts within the kidney due to mutations in PKD1 or PKD2. Although the disease remains incompletely understood, one of the factors associated with ADPKD progression is the release of nucleotides (including ATP), which can initiate autocrine or paracrine purinergic signaling by binding to their receptors. Recently, we and others have shown that increased extracellular vesicle (EVs) release from PKD1 knockout cells can stimulate cyst growth through effects on recipient cells. Given that EVs are an important communicator between different nephron segments, we hypothesize that EVs released from PKD1 knockout distal convoluted tubule (DCT) cells can stimulate cyst growth in the downstream collecting duct (CD). Here, we show that administration of EVs derived from Pkd1-/- mouse distal convoluted tubule (mDCT15) cells result in a significant increase in extracellular ATP release from Pkd1-/- mouse inner medullary collecting duct (iMCD3) cells. In addition, exposure of Pkd1-/- iMCD3 cells to EVs derived from Pkd1-/- mDCT15 cells led to an increase in the phosphorylation of the serine/threonine-specific protein Akt, suggesting activation of proliferative pathways. Finally, the exposure of iMCD3 Pkd1-/- cells to mDCT15 Pkd1-/- EVs increased cyst size in Matrigel. These findings indicate that EVs could be involved in intersegmental communication between the distal convoluted tubule and the collecting duct and potentially stimulate cyst growth.


Assuntos
Cistos , Vesículas Extracelulares , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Trifosfato de Adenosina/metabolismo , Cistos/metabolismo , Canais de Cátion TRPP/metabolismo
20.
Clin Transplant ; 38(3): e15216, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38450843

RESUMO

BACKGROUND: This study investigated whether nature of primary renal disease affects clinical outcomes after renal transplantation at a single center in the United Kingdom. METHODS: This was a retrospective cohort study of 961 renal transplant recipients followed up at a large renal center from 2000 to 2020. Separation of diseases responsible for end-stage kidney disease included glomerulonephritis, diabetic kidney disease, hypertensive nephropathy, autosomal dominant polycystic kidney disease, unknown cause, other causes and chronic pyelonephritis. Outcome data included graft loss, cardiovascular events, malignancy, post-transplant diabetes mellitus and death, analyzed according to primary disease type. RESULTS: The mean age at transplantation was 47.3 years. During a mean follow-up of 7.6 years, 18% of the overall cohort died corresponding to an annualised mortality rate of 2.3%. Death with a functioning graft occurred at a rate of 2.1% per annum, with the highest incidence observed in in patients with diabetic kidney disease (4.1%/year). Post-transplant cardiovascular events occurred in 21% of recipients (2.8% per year), again highest in recipients with diabetic kidney disease (5.1%/year) and hypertensive nephropathy (4.5%/year). Post-transplant diabetes mellitus manifested in 19% of the cohort at an annualized rate of2.1% while cancer incidence stood at 9% with an annualized rate of 1.1% . Graft loss occurred in 6.8% of recipients at the rate of1.2% per year with chronic allograft injury, acute rejection and recurrent glomerulonephritis being the predominant causative factors. Median + IQR dialysis-free survival of the whole cohort was 16.2 (9.9 - > 20) years, being shortest for diabetic kidney disease (11.0 years) and greatest for autosomal dominant polycystic kidney disease (18.2 years) .The collective mean decline in eGFR over time was -1.14ml/min/year. Recipients with Pre-transplant diabetic kidney disease exhibited the fastest rate of decline(-2.1ml/min/year) a statistically significant difference in comparison to the other native kidney diseases with Autosomal dominant polycystic kidney disease exhibiting the lowest rate of decline(-0.05ml/min/year) CONCLUSION: Primary renal disease can influence the outcome after renal transplantation, with patients with prior diabetic kidney disease having the poorest outcome in terms of dialysis-free survival and loss of transplant function. Autosomal polycystic kidney disease, other cause and unknown cause had the best outcomes compared to other primary renal disease groups.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite , Hipertensão Renal , Transplante de Rim , Nefrite , Rim Policístico Autossômico Dominante , Humanos , Pessoa de Meia-Idade , Transplante de Rim/efeitos adversos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA