RESUMO
A series of covalent triazine frameworks (CTFs) are prepared via ionothermal synthesis for supercapacitors. Due to the feature of adjustable pore structure and rich nitrogen, CTFs with regular structure can be used as a group of model compounds to further investigate the influence of pore size and heteroatom on supercapacitors. By comparing the performance of CTFs with different pore structures and nitrogen contents, the experimental results show that BPY-CTF with high specific surface area of 2278 m2 g-1, mesopores structure, and suitable nitrogen content displays a specific capacitance of 393.6 F g-1 at 0.5 A g-1. According to the results and analysis, the existence of mesopores largely enhance the contact area between the electrode material and electrolyte, and then boost the charge transfer. On the other hand, N-doping has a prominent effect on improving the Faradaic pseudo-capacitance and conductivity for CTF electrode materials. This work will inspire further research on the development of highly efficient electrode materials for energy storage devices.
RESUMO
Sulfur poisoning has long been recognized as a bottleneck for the development of long-lived NH3-selective catalytic reduction (SCR) catalysts. Ammonium bisulfate (ABS) deposition on active sites is the major cause of sulfur poisoning at low temperatures, and activating ABS decomposition is regarded as the ultimate way to alleviate sulfur poisoning. In the present study, we reported an interesting finding that ABS decomposition can be simply tailored via adjusting the pore size of the material it deposited. We initiated this study from the preparation of mesoporous silica SBA-15 with uniform one-dimensional pore structure but different pore sizes, followed by ABS loading to investigate the effect. The results showed that ABS decomposition proceeded more easily on SBA-15 with larger pores, and the decomposition temperature declined as large as 40 °C with increasing pore size of SBA-15 from 4.8 to 11.8 nm. To further ascertain the real effect in NH3-SCR reaction, the Fe2O3/SBA-15 probe catalyst was prepared. It was found that the catalyst with larger mesopores exhibited much improved sulfur resistance, and quantitative analysis results obtained from Fourier transform infrared and ion chromatograph further proved that the deposited sulfates were greatly alleviated. The result of the present study demonstrates for the first time the vital role of pore size engineering in ABS decomposition and may open up new opportunities for designing NH3-SCR catalysts with excellent sulfur resistance.
RESUMO
When the polymers are studied by interaction chromatography (IC) in porous media, the IC separation mechanism competes with the size-exclusion chromatography (SEC) mechanism and under specific conditions close to the critical adsorption point (CAP), the elution times of monodisperse polymer samples nonmonotonically depend on pore sizes. We performed Monte Carlo (MC) simulations to elucidate this intriguing effect. By analyzing the behavior of self-avoiding and intersecting chains in two-dimensionally (2D)-confining square pores and in 1D-confining slits in good and Θ-solvents, we confirmed that the dimensionality of the confinement, more specifically, pore geometry, controls the chromatographic behavior. The nonmonotonic dependence of chromatographic characteristics on pore sizes occurs only in separations of self-avoiding chains on stationary phases composed of 2D-confining pores with strongly interacting walls. In agreement with experimental observations, the partition coefficient, K, increases with pore size, D, in narrow pores, peaks and then decreases in wider pores. The combination of thermodynamic and conformational analyses clearly showed that a complex interplay between enthalpy and entropy in 2D-confined media explains the nonmonotonic pore size dependence observed in the IC regime. The study specifies the region of conditions which endanger unambiguous interpretation of elution curves. Because the interplay of steric and adsorption effects takes place not only in chromatography, but also in other separation techniques (e.g., gel electrophoresis, nanofluidic techniques), the conclusions are generally relevant for all separations of large molecules in porous media.
RESUMO
Limited binding capacity and low recovery of large size multi-subunits virus-like particles (VLPs) in conventional agarose-gel based chromatographic supports with small pores have long been a bottleneck limiting the large scale purification and application of VLPs. In this study, four anion exchange media including DEAE-Sepharose FF (DEAE-FF), DEAE-Capto, gigaporous DEAE-AP-120nm and DEAE-AP-280nm with average pore diameters of 32nm, 20nm, 120nm and 280nm, respectively, were applied for purification of hepatitis B virus surface antigen (HBsAg) VLPs. Pore size effects of media on the VLPs adsorption equilibrium, adsorption kinetics, dynamic binding capacity (DBC), and recovery were investigated in detail. According to the confocal laser scanning microscopy observation, adsorption of the VLPs in DEAE-FF and DEAE-Capto was mostly confined to a thin shell on the outer surface of the beads, leaving the underlying pore space and the binding sites inaccessibly, while the large pores in gigaporous media enabled the VLPs to access to the interior pore spaces by diffusion transport efficiently. Compared to the most widely used DEAE-FF, gigaporous media DEAE-AP-280nm gained about 12.9 times increase in static adsorption capacity, 8.0 times increase in DBC, and 11.4 times increase in effective pore diffusivity. Beyond increasing the binding capacity and enhancing the mass transfer, the gigaporous structure also significantly improved the stability of the VLPs during intensive adsorption-desorption process by lowing the multi-point interaction between the VLPs and binding sites in the pores. At 2.0mg/mL-media loading quantity, about 85.5% VLPs were correctly self-assembled after the chromatography with DEAE-AP-280nm media; oppositely about 85.2% VLPs lost their normal assembly with DEAE-FF due to irreversible disassembly. Comparative investigation was made to study the purifying performance of these four chromatographic media for actual VLPs purification from recombinant Hansenula polymorpha. DEAE-AP-280nm media were demonstrated the best results showing the highest recovery of 68.33% and purification fold of 3.47, at 2.98mg protein/mL-media loading quantity and a flow rate of 240cm/h.
Assuntos
Vírion/isolamento & purificação , Adsorção , Cromatografia por Troca Iônica , Difusão , Antígenos de Superfície da Hepatite B/isolamento & purificação , Pichia , Porosidade , Sefarose/química , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificaçãoRESUMO
Supercapacitors have been widely studied around the world in recent years, due to their excellent power density and long cycle life. As the most frequently used electrode materials for supercapacitors, carbonaceous materials attract more and more attention. However, their relatively low energy density still holds back the widespread application. Up to now, various strategies have been developed to figure out this problem. This research news summarizes the recent advances in improving the supercapacitor performance of carbonaceous materials, including the incorporation of heteroatoms and the pore size effect (subnanopores' contribution). In addition, a new class of carbonaceous materials, porous organic networks (PONs) has been managed into the supercapacitor field, which promises great potential in not only improving the supercapacitor performances, but also unraveling the related mechanisms.