Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.865
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(7): 1769-1779.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392960

RESUMO

The fluid-mosaic model posits a liquid-like plasma membrane, which can flow in response to tension gradients. It is widely assumed that membrane flow transmits local changes in membrane tension across the cell in milliseconds, mediating long-range signaling. Here, we show that propagation of membrane tension occurs quickly in cell-attached blebs but is largely suppressed in intact cells. The failure of tension to propagate in cells is explained by a fluid dynamical model that incorporates the flow resistance from cytoskeleton-bound transmembrane proteins. Perturbations to tension propagate diffusively, with a diffusion coefficient Dσ ∼0.024 µm2/s in HeLa cells. In primary endothelial cells, local increases in membrane tension lead only to local activation of mechanosensitive ion channels and to local vesicle fusion. Thus, membrane tension is not a mediator of long-range intracellular signaling, but local variations in tension mediate distinct processes in sub-cellular domains.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Ratos
2.
Proc Natl Acad Sci U S A ; 121(29): e2320962121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980904

RESUMO

Turbulent flows have been used for millennia to mix solutes; a familiar example is stirring cream into coffee. However, many energy, environmental, and industrial processes rely on the mixing of solutes in porous media where confinement suppresses inertial turbulence. As a result, mixing is drastically hindered, requiring fluid to permeate long distances for appreciable mixing and introducing additional steps to drive mixing that can be expensive and environmentally harmful. Here, we demonstrate that this limitation can be overcome just by adding dilute amounts of flexible polymers to the fluid. Flow-driven stretching of the polymers generates an elastic instability, driving turbulent-like chaotic flow fluctuations, despite the pore-scale confinement that prohibits typical inertial turbulence. Using in situ imaging, we show that these fluctuations stretch and fold the fluid within the pores along thin layers ("lamellae") characterized by sharp solute concentration gradients, driving mixing by diffusion in the pores. This process results in a [Formula: see text] reduction in the required mixing length, a [Formula: see text] increase in solute transverse dispersivity, and can be harnessed to increase the rate at which chemical compounds react by [Formula: see text]-enhancements that we rationalize using turbulence-inspired modeling of the underlying transport processes. Our work thereby establishes a simple, robust, versatile, and predictive way to mix solutes in porous media, with potential applications ranging from large-scale chemical production to environmental remediation.

3.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

4.
Proc Natl Acad Sci U S A ; 121(22): e2401656121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787880

RESUMO

Understanding the dynamics of electric-double-layer (EDL) charging in porous media is essential for advancements in next-generation energy storage devices. Due to the high computational demands of direct numerical simulations and a lack of interfacial boundary conditions for reduced-order models, the current understanding of EDL charging is limited to simple geometries. Here, we present a network model to predict EDL charging in arbitrary networks of long pores in the Debye-Hückel limit without restrictions on EDL thickness and pore radii. We demonstrate that electrolyte transport is described by Kirchhoff's laws in terms of the electrochemical potential of charge (the valence-weighted average of the ion electrochemical potentials) instead of the electric potential. By employing the equivalent circuit representation suggested by these modified Kirchhoff's laws, our methodology accurately captures the spatial and temporal dependencies of charge density and electric potential, matching results obtained from computationally intensive direct numerical simulations. Our network model provides results up to six orders of magnitude faster, enabling the efficient simulation of a triangular lattice of five thousand pores in 6 min. We employ the framework to study the impact of pore connectivity and polydispersity on electrode charging dynamics for pore networks and discuss how these factors affect the time scale, energy density, and power density of capacitive charging. The scalability and versatility of our methodology make it a rational tool for designing 3D-printed electrodes and for interpreting geometric effects on electrode impedance spectroscopy measurements.

5.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

6.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252821

RESUMO

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

7.
Proc Natl Acad Sci U S A ; 121(1): e2305890120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147554

RESUMO

Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.

8.
Proc Natl Acad Sci U S A ; 120(50): e2310584120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048464

RESUMO

We present a comprehensive description of the aspect ratio impact on interfacial instability in porous media where a wetting liquid displaces a nonwetting fluid. Building on microfluidic experiments, we evidence imbibition scenarios yielding interfacial instabilities and macroscopic morphologies under different depth confinements, which were controlled by aspect ratio and capillary number. We report a phenomenon whereby a smaller aspect ratio of depth-variable microfluidic porous media and lower capillary number trigger interfacial instability during forced imbibition; otherwise, a larger aspect ratio of uniform-depth microfluidic porous media and higher capillary number will suppress the interfacial instability, which seemingly ignored or contradicts conventional expectations with compact and faceted growth during imbibition. Pore-scale theoretical analytical models, numerical simulations, as well as microfluidic experiments were combined for characteristics of microscopic interfacial dynamics and macroscopic displacement results as a function of aspect ratio, depth variation, and capillary number. Our results present a complete dynamic view of the imbibition process over a full range of regimes from interfacial stabilization to destabilization. We predict the mode of imbibition in porous media based on pore-scale interfacial behavior, which fits well with microfluidic experiments. The study provides insights into the role of aspect ratio in controlling interfacial instabilities in microfluidic porous media. The finding provides design or prediction principles for engineered porous media, such as microfluidic devices, membranes, fabric, exchange columns, and even soil and rocks concerning their desired immiscible imbibition behavior.

9.
Proc Natl Acad Sci U S A ; 120(19): e2222050120, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126692

RESUMO

Porous carbon is a pivotal material for electrochemical applications. The manufacture of porous carbon has relied on chemical treatments (etching or template) that require processing in all areas of the carbon/carbon precursor. We present a unique approach to preparing porous carbon nanospheres by inhibiting the pyrolytic condensation of polymers. Specifically, the porous carbon nanospheres are obtained by coating a thin film of ZnO on polystyrene spheres. The porosity of the porous carbon nanospheres is controlled by the thickness of the ZnO shell, achieving a BET-specific area of 1,124 m2/g with a specific volume of 1.09 cm3/g. We confirm that under the support force by the ZnO shell, a hierarchical pore structure in which small mesopores are connected by large mesopores is formed and that the pore-associated sp3 defects are enriched. These features allow full utilization of the surface area of the carbon pores. The electrochemical capacitive performance of porous carbon nanospheres was evaluated, achieving a high capacitance of 389 F/g at 1 A/g, capacitance retention of 71% at a 20-fold increase in current density, and stability up to 30,000 cycles. In particular, we achieve a specific area-normalized capacitance of 34.6 µF/cm2, which overcomes the limitations of conventional carbon materials.

10.
Proc Natl Acad Sci U S A ; 120(30): e2302561120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467270

RESUMO

Metal-organic frameworks (MOFs), which possess a high degree of crystallinity and a large surface area with tunable inorganic nodes and organic linkers, exhibit high stimuli-responsiveness and molecular adsorption selectivity that enable various applications. The adsorption in MOFs changes the crystalline structure and elastic moduli. Thus, the coexistence of adsorbed/desorbed sites makes the host matrices elastically heterogeneous. However, the role of elastic heterogeneity in the adsorption-desorption transition has been overlooked. Here, we show the asymmetric role of elastic heterogeneity in the adsorption-desorption transition. We construct a minimal model incorporating adsorption-induced lattice expansion/contraction and an increase/decrease in the elastic moduli. We find that the transition is hindered by the entropic and energetic effects which become asymmetric in the adsorption process and desorption process, leading to the strong hysteretic nature of the transition. Furthermore, the adsorbed/desorbed sites exhibit spatially heterogeneous domain formation, implying that the domain morphology and interfacial area between adsorbed/desorbed sites can be controlled by elastic heterogeneity. Our results provide a theoretical guideline for designing soft porous crystals with tunable adsorption hysteresis and the dispersion and domain morphology of adsorbates using elastic heterogeneity.

11.
Proc Natl Acad Sci U S A ; 120(42): e2312091120, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812706

RESUMO

Metal-sulfur batteries have received great attention for electrochemical energy storage due to high theoretical capacity and low cost, but their further development is impeded by low sulfur utilization, poor electrochemical kinetics, and serious shuttle effect of the sulfur cathode. To avoid these problems, herein, a triple-synergistic small-molecule sulfur cathode is designed by employing N, S co-doped hierarchical porous bamboo charcoal as a sulfur host in an aqueous Cu-S battery. Expect the enhanced conductivity and chemisorption induced by N, S synergistic co-doping, the intrinsic synergy of macro-/meso-/microporous triple structure also ensures space-confined small-molecule sulfur as high utilization reactant and effectively alleviates the volume expansion during conversion reaction. Under a further joint synergy between hierarchical structure and heteroatom doping, the resulting sulfur cathode endows the Cu-S battery with outstanding electrochemical performance. Cycled at 5 A g-1, it can deliver a high reversible capacity of 2,509.8 mAh g-1 with a good capacity retention of 97.9% after 800 cycles. In addition, a flexible hybrid pouch cell built by a small-molecule sulfur cathode, Zn anode, and gel electrolytes can firmly deliver high average operating voltage of about 1.3 V with a reversible capacity of over 2,500 mAh g-1 under various destructive conditions, suggesting that the triple-synergistic small-molecule sulfur cathode promises energetic metal-sulfur batteries.

12.
Proc Natl Acad Sci U S A ; 119(30): e2122202119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858419

RESUMO

Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.


Assuntos
Bacillus subtilis , Biofilmes , Estresse Mecânico , Bacillus subtilis/crescimento & desenvolvimento , Meios de Cultura , Modelos Teóricos , Porosidade
13.
Proc Natl Acad Sci U S A ; 119(40): e2209607119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161889

RESUMO

Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria, gram-negative Escherichia coli bacteria, and Candida albicans (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.


Assuntos
DNA Bacteriano , DNA Fúngico , Teste em Amostras de Sangue Seco , Reação em Cadeia da Polimerase , Sepse , Antibacterianos/farmacologia , Candida albicans/genética , Candida albicans/isolamento & purificação , DNA Bacteriano/sangue , DNA Fúngico/sangue , Teste em Amostras de Sangue Seco/métodos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Heme/química , Humanos , Limite de Detecção , Meticilina/farmacologia , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Sepse/sangue , Sepse/diagnóstico , Sepse/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Células-Tronco
14.
Nano Lett ; 24(33): 10313-10321, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115248

RESUMO

Lightweight porous ceramics with a unique combination of superior mechanical strength and damage tolerance are in significant demand in many fields such as energy absorption, aerospace vehicles, and chemical engineering; however, it is difficult to meet these mechanical requirements with conventional porous ceramics. Here, we report a graded structure design strategy to fabricate porous ceramic nanowire networks that simultaneously possess excellent mechanical strength and energy absorption capacity. Our optimized graded nanowire networks show a compressive strength of up to 35.6 MPa at a low density of 540 mg·cm-3, giving rise to a high specific compressive strength of 65.7 kN·m·kg-1 and a high energy absorption capacity of 17.1 kJ·kg-1, owing to a homogeneous distribution of stress upon loading. These values are top performance compared to other porous ceramics, giving our materials significant potential in various engineering fields.

15.
Nano Lett ; 24(35): 10759-10766, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39166768

RESUMO

Currently, one major target for exploring K-ion batteries (KIBs) is enhancing their cycle stability due to the intrinsically sluggish kinetics of large-radius K+ ions. Herein, we report a rationally designed electrode, the S/O co-doped hard carbon spheres with highly ordered porous characteristics (SPC), for extremely durable KIBs. Experimental results and theory calculations confirm that this structure offers exceptional advantages for high-performance KIBs, facilitating rapid K+ diffusion and (de)-intercalation, efficient electrolyte penetration and transport, improved K+ storage sites, and enhanced redox reaction kinetics, thus ensuring the long-term cycle stability. As a result, the as-constructed SPC anode delivers a high reversible capacity of ca. 200 mAh g-1 at a high current density of 2.0 A g-1 and robust stability with ∼100% capacity retention up to 11,000 cycles, outperforming most carbon-based KIB anodes. This work offers insight into developing advanced KIBs with durable stability toward practical applications.

16.
Nano Lett ; 24(34): 10656-10663, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39157960

RESUMO

Efficient electrochemical energy conversion technologies, such as fuel cells and water electrolyzers, require high current densities to lower the capital cost for large-scale commercialization but are often limited by mass transport. In this study, we demonstrated exceptional electrochemical performances in proton electrolyte membrane water electrolyzers (PEMWEs) creating micropatterned pore channels in the porous transport layer (MPC PTL) using a picosecond laser. This approach yielded an impressive performance of 1.82 V @ 2 A·cm-2, which is better than commercial PTL of 1.90 V @ 2 A cm-2. The significant performance enhancement is attributed to the micropatterned porous channel structure, facilitating the efficient expulsion of oxygen bubbles and input of reactant water. This work provides valuable insights for the design of PTL responsible for biphasic transport in electrochemical energy conversion technologies.

17.
Nano Lett ; 24(4): 1284-1293, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230643

RESUMO

Despite its effectiveness in eliminating cancer cells, ferroptosis is hindered by the high natural antioxidant glutathione (GSH) levels in the tumor microenvironment. Herein, we developed a spatially asymmetric nanoparticle, Fe3O4@DMS&PDA@MnO2-SRF, for enhanced ferroptosis. It consists of two subunits: Fe3O4 nanoparticles coated with dendritic mesoporous silica (DMS) and PDA@MnO2 (PDA: polydopamine) loaded with sorafenib (SRF). The spatial isolation of the Fe3O4@DMS and PDA@MnO2-SRF subunits enhances the synergistic effect between the GSH-scavengers and ferroptosis-related components. First, the increased exposure of the Fe3O4 subunit enhances the Fenton reaction, leading to increased production of reactive oxygen species. Furthermore, the PDA@MnO2-SRF subunit effectively depletes GSH, thereby inducing ferroptosis by the inactivation of glutathione-dependent peroxidases 4. Moreover, the SRF blocks Xc- transport in tumor cells, augmenting GSH depletion capabilities. The dual GSH depletion of the Fe3O4@DMS&PDA@MnO2-SRF significantly weakens the antioxidative system, boosting the chemodynamic performance and leading to increased ferroptosis of tumor cells.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Compostos de Manganês/farmacologia , Óxidos , Antioxidantes , Glutationa , Dióxido de Silício , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
18.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592087

RESUMO

Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.

19.
Nano Lett ; 24(35): 11059-11066, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186689

RESUMO

The downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material. These porous Au IDE-based symmetric micro-supercapacitors (P-SMSCs) show a remarkable enhancement in charge storage performance, with a 187% increase in areal capacitance at 2.5 mA compared to conventional flat Au IDE-based devices, despite identical active material loading times. Our P-SMSCs achieve an areal capacitance of 60 mF/cm2, a peak areal energy density of 5.44 µWh/cm2, and an areal power of 2778 µW/cm2, surpassing most reported SMSCs. This study advances high-performance SMSCs by developing highly porous microscale planar current collectors, optimizing microelectrode use, and maximizing capacity within a compact footprint.

20.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA