Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 77: 76-88, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948241

RESUMO

Candida viswanathii is a promising cell factory for producing dodecanedioic acid (DDA) and other long chain dicarboxylic acids. However, metabolic engineering of C. viswanathii is difficult partly due to the lack of synthetic biology toolkits. Here we developed CRISPR-based approaches for rational genome and metabolic engineering of C. viswanathii. We first optimized the CRISPR system and protocol to promote the homozygous gene integration efficiency to >60%. We also designed a split CRISPR system for one-step integration of multiple genes into C. viswanathii. We uncovered that co-expression of CYP52A19, CPRb and FAO2 that catalyze different steps in the biotransformation enhances DDA production and abolishes accumulation of intermediates. We also unveiled that co-expression of additional enzyme POS5 further promotes DDA production and augments cell growth. We harnessed the split CRISPR system to co-integrate these 4 genes (13.6 kb) into C. viswanathii and generated a stable strain that doubles the DDA titer (224 g/L), molar conversion (83%) and productivity (1.87 g/L/h) when compared with the parent strain. This study altogether identifies appropriate enzymes/promoters to augment dodecane conversion to DDA and implicates the potential of split CRISPR system for metabolic engineering of C. viswanathii.


Assuntos
Candida , Engenharia Metabólica , Candida/genética , Candida/metabolismo , Ácidos Dicarboxílicos/metabolismo , Sistemas CRISPR-Cas
2.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757828

RESUMO

High-level expression and secretion of heterologous proteins in yeast cause an increased energy demand, which may result in altered metabolic flux distributions. Moreover, recombinant protein overproduction often results in endoplasmic reticulum (ER) stress and oxidative stress, causing deviations from the optimal NAD(P)H regeneration balance. In this context, overexpression of genes encoding enzymes catalyzing endogenous NADPH-producing reactions, such as the oxidative branch of the pentose phosphate pathway, has been previously shown to improve protein production in Pichia pastoris (syn. Komagataella spp.). In this study, we evaluate the overexpression of the Saccharomyces cerevisiaePOS5-encoded NADH kinase in a recombinant P. pastoris strain as an alternative approach to overcome such redox constraints. Specifically, POS5 was cooverexpressed in a strain secreting an antibody fragment, either by directing Pos5 to the cytosol or to the mitochondria. The physiology of the resulting strains was evaluated in continuous cultivations with glycerol or glucose as the sole carbon source, as well as under hypoxia (on glucose). Cytosolic targeting of Pos5 NADH kinase resulted in lower biomass-substrate yields but allowed for a 2-fold increase in product specific productivity. In contrast, Pos5 NADH kinase targeting to the mitochondria did not affect growth physiology and recombinant protein production significantly. Growth physiological parameters were in silico evaluated using the recent upgraded version (v3.0) of the P. pastoris consensus genome-scale metabolic model iMT1026, providing insights on the impact of POS5 overexpression on metabolic flux distributions.IMPORTANCE Recombinant protein overproduction often results in oxidative stress, causing deviations from the optimal redox cofactor regeneration balance. This becomes one of the limiting factors in obtaining high levels of heterologous protein production. Overexpression of redox-affecting enzymes has been explored in other organisms, such as Saccharomyces cerevisiae, as a means to fine tune the cofactor regeneration balance in order to obtain higher protein titers. In the present work, this strategy is explored in P. pastoris In particular, one NADH kinase enzyme from S. cerevisiae (Pos5) is used, either in the cytosol or in mitochondria of P. pastoris, and its impact on the production of a model protein (antibody fragment) is evaluated. A significant improvement in the production of the model protein is observed when the kinase is directed to the cytosol. These results are significant in the field of heterologous protein production in general and in particular in the development of improved metabolic engineering strategies for P. pastoris.


Assuntos
Regulação Fúngica da Expressão Gênica , Microrganismos Geneticamente Modificados/genética , Proteínas Mitocondriais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pichia/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Lett Appl Microbiol ; 61(4): 354-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179622

RESUMO

UNLABELLED: Recombinant Saccharomyces cerevisiae expressing exogenous carotenogenic genes can synthesize carotenoids. NADPH is a key cofactor for carotenoid biosynthesis, while glucose-6-phosphate dehydrogenase (Zwf1) and an NADH kinase (Pos5) are the two main NADPH-supplying sources in S. cerevisiae. Here, the effect of ZWF1 and POS5 overexpression on carotenoid yield in recombinant S. cerevisiae was explored. The initial carotenogenic strain Sc-EYBIH+I which expressed crtE, crtYB, crtI, cHMG1 and another copy of crtI could synthesize 1·35 ± 0·13 mg l(-1) of lycopene and 0·32 ± 0·02 mg l(-1) of ß-carotene. When ZWF1 was overexpressed (Sc-EYBIZH+I), glucose-6-phosphate dehydrogenase activity increased by 103-fold, the transcription level of crtE and crtI increased significantly, the lycopene and ß-carotene yield increased to 2·29 ± 0·06 and 0·38 ± 0·02 mg l(-1) respectively. When POS5 was overexpressed (Sc-EYBIPH+I), NAD kinase activity increased by 5·5-fold, the transcription level of crtE, crtYB and crtI increased obviously, the lycopene and ß-carotene yield increased to 2·50 ± 0·11 and 0·53 ± 0·03 mg l(-1) respectively. Therefore, improvement of NADPH supply contributed to carotenoids biosynthesis in S. cerevisiae and overexpression of POS5 was more effective than overexpression of ZWF1. This study provides a new strategy for enhancing carotenoid biosynthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: NADPH is a key cofactor for carotenoid biosynthesis. Glucose-6-phosphate dehydrogenase (Zwf1) and an NADH kinase (Pos5) are effective NADPH-supplying sources in Saccharomyces cerevisiae. When ZWF1 and POS5 were overexpressed in a carotenoid-producing S. cerevisiae strain individually, the total yield of lycopene and ß-carotene increased by 59·9% and 81·4%, respectively, and the final product ß-carotene yield increased by 18·8% and 65·6% respectively. This suggests the improvement of NADPH supply as a useful strategy for carotenoids biosynthesis.


Assuntos
Carotenoides/biossíntese , Glucosefosfato Desidrogenase/metabolismo , Proteínas Mitocondriais/metabolismo , NADP/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta Caroteno/biossíntese , Glucosefosfato Desidrogenase/genética , Licopeno , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
4.
J Agric Food Chem ; 66(45): 12009-12016, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350965

RESUMO

Protopanaxadiol (PPD), an active triterpene compound, is the precursor of high-value ginsenosides. In this study, we report a strategy for the enhancement of PPD production in Saccharomyces cerevisiae by cofermentation of glucose and xylose. In mixed sugar fermentation, strain GW6 showed higher PPD titer and yield than that obtained from glucose cultivation. Then, engineering strategies were implemented on GW6 to enhance the PPD yields, such as adjustment of the central carbon metabolism, optimization of the mevalonate pathway, reinforcement of the xylose assimilation pathway, and regulation of cofactor balance, namely, overexpression of xPK/PTA, ERG10/ERG12/ERG13, XYL1/XYL2/TAL1, and POS5, respectively. In particular, the final obtained strain GW10, harboring overexpressed POS5, exhibited the highest PPD yield, which was 2.06 mg of PPD/g of mixed sugar. In a 5-L fermenter, PPD titer reached 152.37 mg/L. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of PPD.


Assuntos
Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sapogeninas/metabolismo , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Fermentação , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Agric Food Chem ; 65(37): 8162-8170, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28845666

RESUMO

Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.


Assuntos
Acil Coenzima A/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , NADP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Acil Coenzima A/genética , Hidroximetilglutaril-CoA Redutases/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Biochem Cell Biol ; 65: 61-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024642

RESUMO

Auranofin is a gold based drug in clinical use since 1985 for the treatment of rheumatoid arthritis. Beyond its antinflammatory properties, auranofin exhibits other attractive biological and pharmacological actions such as a potent in vitro cytotoxicity and relevant antimicrobial and antiparasitic effects that make it amenable for new therapeutic indications. For instance, auranofin is currently tested as an anticancer agent in four independent clinical trials; yet, its mode of action is highly controversial. With the present study, we explore the effects of auranofin in Saccharomyces cerevisiae and its likely mechanism. Notably, auranofin is reported to induce remarkable yeast growth inhibition. Solid evidence is provided that growth inhibition is the consequence of a direct cytotoxic insult occurring at the mitochondrial level; a profound depression of cell respiration is indeed clearly documented as the main cause of cell death while induction of ROS plays only a secondary role. More in detail, the mitochondrial NADH kinase Pos5 is identified as a primary target for auranofin. The implications of these results are discussed in the frame of current mechanistic knowledge on the cellular effects of auranofin and of its role as a prospective anticancer drug.


Assuntos
Antirreumáticos/farmacologia , Auranofina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA