Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.228
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 1-21, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31594433

RESUMO

It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.


Assuntos
Suscetibilidade a Doenças , Transtorno Obsessivo-Compulsivo/etiologia , Transtorno Obsessivo-Compulsivo/metabolismo , Animais , Autoimunidade , Biomarcadores , Morte Celular , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade Inata , Transtorno Obsessivo-Compulsivo/psicologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Superantígenos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo
2.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
3.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537136

RESUMO

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Assuntos
COVID-19/epidemiologia , Evolução Molecular , Mutação , Pandemias , SARS-CoV-2/genética , Sequência de Aminoácidos/genética , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Códon/genética , Genes Virais , Deriva Genética , Adaptação ao Hospedeiro/genética , Humanos , Evasão da Resposta Imune , Filogenia , Saúde Pública
4.
Immunity ; 54(5): 988-1001.e5, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33857421

RESUMO

Positive selection of high-affinity B cells within germinal centers (GCs) drives affinity maturation of antibody responses. Here, we examined the mechanism underlying the parallel transition from immunoglobulin M (IgM) to IgG. Early GCs contained mostly unswitched IgM+ B cells; IgG+ B cells subsequently increased in frequency, dominating GC responses 14-21 days after antigen challenge. Somatic hypermutation and generation of high-affinity clones occurred with equal efficiency among IgM+ and IgG+ GC B cells, and inactivation of Ig class-switch recombination did not prevent depletion of IgM+ GC B cells. Instead, high-affinity IgG+ GC B cells outcompeted high-affinity IgM+ GC B cells via a selective advantage associated with IgG antigen receptor structure but independent of the extended cytoplasmic tail. Thus, two parallel forms of GC B-cell-positive selection, based on antigen receptor variable and constant regions, respectively, operate in tandem to ensure high-affinity IgG antibodies predominate in mature serum antibody responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Animais , Formação de Anticorpos/imunologia , Antígenos/imunologia , Feminino , Switching de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovinos/imunologia , Hipermutação Somática de Imunoglobulina/imunologia
5.
Immunity ; 54(8): 1807-1824.e14, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380064

RESUMO

The transcription factor forkhead box O1 (FOXO1), which instructs the dark zone program to direct germinal center (GC) polarity, is typically inactivated by phosphatidylinositol 3-kinase (PI3K) signals. Here, we investigated how FOXO1 mutations targeting this regulatory axis in GC-derived B cell non-Hodgkin lymphomas (B-NHLs) contribute to lymphomagenesis. Examination of primary B-NHL tissues revealed that FOXO1 mutations and PI3K pathway activity were not directly correlated. Human B cell lines bearing FOXO1 mutations exhibited hyperactivation of PI3K and Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) signaling, and increased cell survival under stress conditions as a result of alterations in FOXO1 transcriptional affinities and activation of transcriptional programs characteristic of GC-positive selection. When modeled in mice, FOXO1 mutations conferred competitive advantage to B cells in response to key T-dependent immune signals, disrupting GC homeostasis. FOXO1 mutant transcriptional signatures were prevalent in human B-NHL and predicted poor clinical outcomes. Thus, rather than enforcing FOXO1 constitutive activity, FOXO1 mutations enable co-option of GC-positive selection programs during the pathogenesis of GC-derived lymphomas.


Assuntos
Linfócitos B/citologia , Proteína Forkhead Box O1/genética , Centro Germinativo/imunologia , Linfoma de Células B/patologia , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Linfoma de Células B/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
Plant Cell ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405425

RESUMO

Oxygenic photosynthesis generates the initial energy source that fuels nearly all life on Earth. At the heart of the process are the photosystems, which are pigment binding multi-protein complexes that catalyse the first step of photochemical conversion of light energy into chemical energy. Here, we investigate the molecular evolution of the plastid-encoded photosystem subunits at single-residue resolution across 773 angiosperm species. We show that despite an extremely high level of conservation, 7% of residues in the photosystems, spanning all photosystem subunits, exhibit hallmarks of adaptive evolution. Through in silico modelling of these adaptive substitutions, we uncover the impact of these changes on the predicted properties of the photosystems, focussing on their effects on co-factor binding and inter-subunit interface formation. By analyzing these cohorts of changes, we reveal that evolution has repeatedly altered the interaction between photosystem II and its D1 subunit in a manner that is predicted to reduce the energetic barrier for D1 turnover and photosystem repair. Together, these results provide insight into the trajectory of photosystem adaptation during angiosperm evolution.

7.
Trends Genet ; 39(8): 602-608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36878820

RESUMO

Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.


Assuntos
Adaptação Fisiológica , Redes Reguladoras de Genes , Fenótipo , Mutação/genética , Redes Reguladoras de Genes/genética , Adaptação Fisiológica/genética , Epistasia Genética , Seleção Genética , Modelos Genéticos , Aptidão Genética , Variação Genética/genética
8.
EMBO Rep ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375464

RESUMO

Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.

9.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844245

RESUMO

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Assuntos
Quirópteros , Ecolocação , Animais , Quirópteros/fisiologia , Filogenia , Evolução Molecular , Mamíferos/genética , Audição/genética , Baleias/fisiologia , Aves/genética , Ecolocação/fisiologia
10.
Plant J ; 118(2): 488-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173092

RESUMO

Phanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.


Assuntos
Genoma de Planta , Genômica , Haplótipos , Análise de Sequência de DNA , Genoma de Planta/genética , Flavonoides/genética
11.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306314

RESUMO

Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.


Assuntos
Evolução Molecular , Smegmamorpha , Humanos , Animais , Cromossomo Y/genética , Cromossomos Sexuais , Cromossomos Humanos Y , Cromossomos Humanos X , Smegmamorpha/genética
12.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39189646

RESUMO

Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.


Assuntos
Evolução Molecular , Heterocromatina , Heterocromatina/genética , Animais , Elementos de DNA Transponíveis , Drosophila/genética , Seleção Genética , Drosophila melanogaster/genética , Dosagem de Genes
13.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101471

RESUMO

Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.


Assuntos
Evolução Molecular , Retroelementos , Animais , Seleção Genética , Mamíferos/genética , Mamíferos/virologia , Proteínas Intrinsicamente Desordenadas/genética , Mudança da Fase de Leitura do Gene Ribossômico , Humanos
14.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507667

RESUMO

Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.


Assuntos
Capsídeo , Retroelementos , Gravidez , Animais , Feminino , Humanos , Evolução Molecular , Placenta , Mamíferos/genética , Proteínas do Capsídeo/genética , Eutérios/genética , Filogenia
15.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829800

RESUMO

It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.


Assuntos
Evolução Molecular , Conversão Gênica , Modelos Genéticos , Recombinação Genética , Seleção Genética , Aptidão Genética , Mutação , Composição de Bases , Ligação Genética
16.
Am J Hum Genet ; 109(5): 967-972, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523147

RESUMO

The common loss-of-function mutation R577X in the structural muscle protein ACTN3 emerged as a potential target of positive selection from early studies and has been the focus of insightful physiological work suggesting a significant impact on muscle metabolism. Adaptation to cold climates has been proposed as a key adaptive mechanism explaining its global allele frequency patterns. Here, we re-examine this hypothesis analyzing modern (n = 3,626) and ancient (n = 1,651) genomic data by using allele-frequency as well as haplotype homozygosity-based methods. The presented results are more consistent with genetic drift rather than selection in cold climates as the main driver of the ACTN3 R577X frequency distribution in human populations across the world. This Matters Arising paper is in response to Wyckelsma et al. (2021),1 published in The American Journal of Human Genetics. See also the response by Wyckelsma et al. (2022),2 published in this issue.


Assuntos
Actinina , Músculo Esquelético , Actinina/genética , Temperatura Baixa , Frequência do Gene , Homozigoto , Humanos , Músculo Esquelético/metabolismo , Termogênese
17.
Am J Hum Genet ; 109(4): 710-726, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259336

RESUMO

Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.


Assuntos
Genômica , Seleção Genética , Adaptação Fisiológica/genética , Apolipoproteína L1/genética , População Negra , Fluxo Gênico , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único
18.
Proc Natl Acad Sci U S A ; 119(34): e2205986119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969758

RESUMO

The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.


Assuntos
Adaptação Fisiológica , Canidae , Filogenia , Adaptação Fisiológica/genética , Animais , Canidae/classificação , Canidae/genética , Demografia , Variação Genética , Genômica , América do Sul
19.
Proc Natl Acad Sci U S A ; 119(35): e2116681119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994669

RESUMO

The platyrrhine family Cebidae (capuchin and squirrel monkeys) exhibit among the largest primate encephalization quotients. Each cebid lineage is also characterized by notable lineage-specific traits, with capuchins showing striking similarities to Hominidae such as high sensorimotor intelligence with tool use, advanced cognitive abilities, and behavioral flexibility. Here, we take a comparative genomics approach, performing genome-wide tests for positive selection across five cebid branches, to gain insight into major periods of cebid adaptive evolution. We uncover candidate targets of selection across cebid evolutionary history that may underlie the emergence of lineage-specific traits. Our analyses highlight shifting and sustained selective pressures on genes related to brain development, longevity, reproduction, and morphology, including evidence for cumulative and diversifying neurobiological adaptations across cebid evolution. In addition to generating a high-quality reference genome assembly for robust capuchins, our results lend to a better understanding of the adaptive diversification of this distinctive primate clade.


Assuntos
Evolução Biológica , Cebidae , Genoma , Genômica , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Cebidae/anatomia & histologia , Cebidae/classificação , Cebidae/genética , Cebidae/fisiologia , Cebus/anatomia & histologia , Cebus/genética , Cebus/fisiologia , Cebus/psicologia , Cognição , Genoma/genética , Hominidae/fisiologia , Hominidae/psicologia , Inteligência/genética , Longevidade/genética , Filogenia , Reprodução/genética , Saimiri/anatomia & histologia , Saimiri/genética , Saimiri/fisiologia , Saimiri/psicologia , Seleção Genética , Comportamento de Utilização de Ferramentas
20.
Proc Natl Acad Sci U S A ; 119(35): e2206610119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947637

RESUMO

The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.


Assuntos
COVID-19 , Quirópteros , Evolução Molecular , Adaptação ao Hospedeiro , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , Quirópteros/virologia , Predisposição Genética para Doença , Adaptação ao Hospedeiro/genética , Humanos , Pandemias , Primatas/genética , Primatas/virologia , SARS-CoV-2/genética , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA