Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 39(15): e104054, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32311161

RESUMO

Integral membrane proteins insert into the bacterial inner membrane co-translationally via the translocon. Transmembrane (TM) segments of nascent proteins adopt their native topological arrangement with the N-terminus of the first TM (TM1) oriented to the outside (type I) or the inside (type II) of the cell. Here, we study TM1 topogenesis during ongoing translation in a bacterial in vitro system, applying real-time FRET and protease protection assays. We find that TM1 of the type I protein LepB reaches the translocon immediately upon emerging from the ribosome. In contrast, the type II protein EmrD requires a longer nascent chain before TM1 reaches the translocon and adopts its topology by looping inside the ribosomal peptide exit tunnel. Looping presumably is mediated by interactions between positive charges at the N-terminus of TM1 and negative charges in the tunnel wall. Early TM1 inversion is abrogated by charge reversal at the N-terminus. Kinetic analysis also shows that co-translational membrane insertion of TM1 is intrinsically rapid and rate-limited by translation. Thus, the ribosome has an important role in membrane protein topogenesis.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/biossíntese , Biossíntese de Proteínas , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética
2.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008565

RESUMO

Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.


Assuntos
Retículo Endoplasmático/metabolismo , Transporte Proteico/fisiologia , Proteínas/metabolismo , Animais , Citosol/metabolismo , Humanos , Sinais Direcionadores de Proteínas/fisiologia , Partícula de Reconhecimento de Sinal/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(37): 10340-5, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27562165

RESUMO

The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTßL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTßL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il).


Assuntos
Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Conformação Proteica , Sequência de Aminoácidos/genética , Aminoácidos/química , Membrana Celular/genética , Citoplasma/química , Citoplasma/genética , Metabolismo Energético/genética , Proteínas de Membrana/genética
4.
Biochim Biophys Acta ; 1863(7 Pt A): 1534-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27086875

RESUMO

Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.


Assuntos
Membrana Celular/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Anticorpos Monoclonais/imunologia , Retículo Endoplasmático/metabolismo , Epitopos , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Transfecção
5.
Biochim Biophys Acta Biomembr ; 1859(7): 1291-1300, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432030

RESUMO

The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.


Assuntos
Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química
6.
Biochim Biophys Acta ; 1848(11 Pt A): 2839-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275590

RESUMO

The functions of transmembrane proteins in living cells are widespread; they range from various transport processes to energy production, from cell-cell adhesion to communication. Structurally, they are highly ordered in their membrane-spanning regions, but may contain disordered regions in the cytosolic and extra-cytosolic parts. In this study, we have investigated the disordered regions in transmembrane proteins by a stringent definition of disordered residues on the currently available largest experimental dataset, and show a significant correlation between the spatial distributions of positively charged residues and disordered regions. This finding suggests a new role of disordered regions in transmembrane proteins by providing structural flexibility for stabilizing interactions with negatively charged head groups of the lipid molecules. We also find a preference of structural disorder in the terminal--as opposed to loop--regions in transmembrane proteins, and survey the respective functions involved in recruiting other proteins or mediating allosteric signaling effects. Finally, we critically compare disorder prediction methods on our transmembrane protein set. While there are no major differences between these methods using the usual statistics, such as per residue accuracies, Matthew's correlation coefficients, etc.; substantial differences can be found regarding the spatial distribution of the predicted disordered regions. We conclude that a predictor optimized for transmembrane proteins would be of high value to the field of structural disorder.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Biologia Computacional/métodos , Internet , Reprodutibilidade dos Testes
7.
Biochim Biophys Acta ; 1843(8): 1475-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24341994

RESUMO

Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid-protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Transporte Proteico/genética , Bactérias/química , Bactérias/metabolismo , Citoplasma/metabolismo , Lipídeos/química , Lipídeos/genética , Proteínas de Membrana/química , Fosfatidiletanolaminas/genética , Dobramento de Proteína , Estrutura Terciária de Proteína/genética
8.
Biochem Biophys Res Commun ; 453(2): 268-76, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24938127

RESUMO

Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.


Assuntos
Proteínas de Membrana/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Potenciais da Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico
9.
Front Cell Dev Biol ; 11: 1220441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635876

RESUMO

DNA replication, transcription, and translation in eukaryotic cells occur with decreasing but still high fidelity. In contrast, for the estimated 33% of the human proteome that is inserted as transmembrane (TM) proteins, insertion with a non-functional inverted topology is frequent. Correct topology is essential for function and trafficking to appropriate cellular compartments and is controlled principally by responses to charged residues within 15 residues of the inserted TM domain (TMD); the flank with the higher positive charge remains in the cytosol (inside), following the positive inside rule (PIR). Yeast (Saccharomyces cerevisiae) mutants that increase insertion contrary to the PIR were selected. Mutants with strong phenotypes were found only in SPF1 and STE24 (human cell orthologs are ATP13A1 and ZMPSte24) with, at the time, no known relevant functions. Spf1/Atp13A1 is now known to dislocate to the cytosol TM proteins inserted contrary to the PIR, allowing energy-conserving reinsertion. We hypothesize that Spf1 and Ste24 both recognize the short, positively charged ER luminal peptides of TM proteins inserted contrary to the PIR, accepting these peptides into their large membrane-spanning, water-filled cavities through interaction with their many interior surface negative charges. While entry was demonstrated for Spf1, no published evidence directly demonstrates substrate entry to the Ste24 cavity, internal access to its zinc metalloprotease (ZMP) site, or active withdrawal of fragments, which may be essential for function. Spf1 and Ste24 comprise a PIR quality control system that is conserved in all eukaryotes and presumably evolved in prokaryotic progenitors as they gained differentiated membrane functions. About 75% of the PIR is imposed by this quality control system, which joins the UPR, ERAD, and autophagy (ER-phagy) in coordinated, overlapping quality control of ER protein function.

10.
J Mol Biol ; 430(24): 4955-4970, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30359580

RESUMO

Advancements in sequencing in the past decades enabled not only the determination of the human proteome but also the identification of a large number of genetic variations in the human population. The phenotypic effects of these mutations range from neutral for polymorphisms to severe for some somatic mutations. Disease-causing germline mutations (DCMs) represent a special and largely understudied class with relatively weak phenotypes. While for somatic mutations their effect on protein structure and regulation has been extensively studied in select cases, for germline mutations, this information is currently largely missing. In this analysis, a large amount of DCMs were analyzed and contrasted to polymorphisms from a structural point of view. Our results delineate the characteristic features of DCMs starting at the global level of partitioning proteins into globular, disordered and transmembrane classes, moving toward smaller structural units describing secondary structure elements and molecular surfaces, reaching down to the smallest structural entity, post-translational modifications. We show how these structural entities influence the emergence and possible phenotypic effects of DCMs.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Proteínas/química , Proteínas/metabolismo , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Humanos , Modelos Genéticos , Modelos Moleculares , Fenótipo , Polimorfismo Genético , Modificação Traducional de Proteínas , Estrutura Secundária de Proteína , Proteínas/genética
11.
J Mol Biol ; 426(16): 2982-91, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-24927974

RESUMO

The translocon recognizes transmembrane helices with sufficient level of hydrophobicity and inserts them into the membrane. However, sometimes less hydrophobic helices are also recognized. Positive inside rule, orientational preferences of and specific interactions with neighboring helices have been shown to aid in the recognition of these helices, at least in artificial systems. To better understand how the translocon inserts marginally hydrophobic helices, we studied three naturally occurring marginally hydrophobic helices, which were previously shown to require the subsequent helix for efficient translocon recognition. We find no evidence for specific interactions when we scan all residues in the subsequent helices. Instead, we identify arginines located at the N-terminal part of the subsequent helices that are crucial for the recognition of the marginally hydrophobic transmembrane helices, indicating that the positive inside rule is important. However, in two of the constructs, these arginines do not aid in the recognition without the rest of the subsequent helix; that is, the positive inside rule alone is not sufficient. Instead, the improved recognition of marginally hydrophobic helices can here be explained as follows: the positive inside rule provides an orientational preference of the subsequent helix, which in turn allows the marginally hydrophobic helix to be inserted; that is, the effect of the positive inside rule is stronger if positively charged residues are followed by a transmembrane helix. Such a mechanism obviously cannot aid C-terminal helices, and consequently, we find that the terminal helices in multi-spanning membrane proteins are more hydrophobic than internal helices.


Assuntos
Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Serina Endopeptidases/metabolismo , Animais , Arginina/química , Arginina/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cães , Glicosilação , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microssomos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Pâncreas/metabolismo , Conformação Proteica , Serina Endopeptidases/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA