Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Arch Virol ; 169(7): 143, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864946

RESUMO

Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.


Assuntos
Especificidade de Hospedeiro , Doenças das Plantas , Potyvirus , Proteínas Virais , Potyvirus/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Glycine max/virologia , Nicotiana/virologia , Filogenia
2.
Phytopathology ; 113(8): 1583-1594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935377

RESUMO

The application of attenuated viruses has been widely practiced for protecting crops from infection by related severe strains of the same species. Papaya ringspot virus W-type (PRSV W) and zucchini yellow mosaic virus (ZYMV) devastate cucurbits worldwide. However, the prevailing of these two viruses in cucurbits cannot be prevented by a single protective virus. In this study, we disclosed that co-infection of horn melon plants by two mild strains, PRSV P-type (PRSV P) HA5-1 and ZYMV-ZAC (a previously developed mild mutant of ZYMV) confers concurrent protection against PRSV P and ZYMV. Consequently, mild mutants of PRSV W were created by site-directed mutagenesis through modifications of the pathogenicity motifs FRNK and PD in helper component-protease (HC-Pro). A stable PRSV W mutant WAC (PRSV-WAC) with R181I and D397N mutations in HC-Pro was generated, inducing mild mottling, followed by symptomless recovery in cucurbits. Horn melon plants pre-infected by PRSV-WAC and ZYMV-ZAC showed no apparent interference on viral accumulation with no synergistic effects on symptoms. An agroinfiltration assay of mixed HC-Pros of WACHC-Pro + ZACHC-Pro revealed no additive effect of RNA silencing suppression. PRSV-WAC or ZYMV-ZAC alone only antagonized a severe strain of homologous virus, while co-infection with these two mild strains provided complete protection against both PRSV W and ZYMV. Similar results were reproduced in muskmelon and watermelon plants, indicating the feasibility of a two-in-one vaccine for concurrent control of PRSV W and ZYMV in cucurbits.


Assuntos
Afídeos , Coinfecção , Cucurbitaceae , Potyvirus , Animais , Doenças das Plantas , Potyvirus/genética
3.
Biochemistry (Mosc) ; 88(12): 2146-2156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462457

RESUMO

Coat proteins (CP) of the potato virus A virions (PVA) contain partially disordered N-terminal domains, which are necessary for performing vital functions of the virus. Comparative analysis of the structures of coat proteins (CPs) in the intact PVA virions and in the virus particles lacking N-terminal 32 amino acids (PVAΔ32) was carried out in this work based on the tritium planigraphy data. Using atomic-resolution structure of the potato virus Y potyvirus (PVY) protein, which is a homolog of the CP PVA, the available CP surfaces in the PVY virion were calculated and the areas of intersubunit/interhelix contacts were determined. For this purpose, the approach of Lee and Richards [Lee, B., and Richards, F. M. (1971) J. Mol. Biol., 55, 379-400] was used. Comparison of incorporation profiles of the tritium label in the intact and trypsin-degraded PVAΔ32 revealed position of the ΔN-peptide shielding the surface domain (a.a. 66-73, 141-146) and the interhelix zone (a.a. 161-175) of the PVA CP. Presence of the channels/cavities was found in the virion, which turned out to be partially permeable to tritium atoms. Upon removal of the ΔN-peptide, decrease in the label incorporation within the virion (a.a. 184-200) was also observed, indicating possible structural transition leading to the virion compactization. Based on the obtained data, we can conclude that part of the surface ΔN-peptide is inserted between the coils of the virion helix thus increasing the helix pitch and providing greater flexibility of the virion, which is important for intercellular transport of the viruses in the plants.


Assuntos
Proteínas do Capsídeo , Potyvirus , Proteínas do Capsídeo/metabolismo , Trítio/análise , Trítio/metabolismo , Proteólise , Simulação por Computador , Potyvirus/metabolismo , Vírion/metabolismo , Peptídeos/metabolismo
4.
Plant Dis ; 107(8): 2307-2312, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36548918

RESUMO

The planting of passion fruit (Passiflora edulis) in Guizhou Province has gradually increased, and the area under cultivation ranks third in China. However, the cultivation and production of passion fruit is severely affected by viral diseases. In 2021 and 2022, we investigated the occurrence of multiple viral diseases in major cultivation areas, identified the main viruses and conducted field surveys in different growing areas of passion fruit in Guizhou Province, China. In total, 308 samples were randomly collected from 10 different passion fruit cultivation areas, and seven viral diseases were identified using electron microscopy, small RNA sequencing, and reverse-transcription polymerase chain reaction. Among them, the infection rate of Telosma mosaic virus (TeMV) was the highest (50%), followed by East Asian Passiflora virus (EAPV) (19%), and cucumber mosaic virus (CMV) (15%). The detection rates of the other four viruses were lower: Passiflora latent virus (PLV) (1%), turnip mosaic virus (TuMV) (0.6%), Passiflora virus Y (PaVY) (0.3%), and Euphorbia leaf curl virus (ELCV) (6%). In addition, high rates of mixed TeMV + CMV + EAPV infections were found in the province. Notably, 79% of EAPV-infected plants were also infected with TeMV. Finally, the molecular characteristics of the two highly detected potyviruses, TeMV and EAPV, were analyzed. To our knowledge, this study is the first systematic survey of viral diseases of passion fruit in Guizhou Province, China.


Assuntos
Infecções por Citomegalovirus , Passiflora , Potyvirus , Vírus , Frutas , Potyvirus/genética
5.
Mol Biol Rep ; 49(10): 10133-10136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028731

RESUMO

BACKGROUND: African yam bean (Sphenostylis stenocarpa) is an underutilized crop that has the potential to contribute to sustainable food security. In October 2021, more than 90% African Yam Bean (AYB) plants showed typical virus symptoms of mosaic and necrosis in the grain legumes field of the Institute of Agricultural Research and Training (IAR&T), Nigeria. METHODS AND RESULTS: Subsequently, leaf samples were collected and tested by ELISA and PCR to identify the virus species. Anti-BCMV and anti-potyvirus antibodies both gave positive results when symptomatic leaves were tested, and PCR using primers designed to the coat protein gene of BCMV amplified a band of the expected size (469 bp). The sequence of the PCR product was deposited in GenBank with the accession No. OL763314. The nucleotide sequence of the coat protein gene had 99% identity with BCMV isolate TN2 (KY044818). The identities of the nucleotide and amino acid sequence of the partial CP gene of the isolated virus relative to those of other potyviruses were 82.96-99.12% and 87.33-100%,, respectively. Phylogenetic analyses of the partial CP-nucleotide sequences grouped the isolate from this study (BCMV-IART-AYB) and BCMV-TN2 in the same cluster with other BCMV strains of the peanut stripe (PSt) and the blackeye cowpea (BlC) strains. CONCLUSIONS: In this study, we identified Bean commom mosaic virus (BCMV) infecting AYB for the first time in Nigeria and show that it has high nucleotide and amino acid identity with an Isolate of cowpea-infecting BCMV in India and China respectively than isolate in Nigeria.


Assuntos
Fabaceae , Potyvirus , Sphenostylis , Aminoácidos/genética , Capsídeo/química , Primers do DNA , Nigéria , Filogenia , Potyvirus/genética
6.
Biochemistry (Mosc) ; 86(2): 230-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832421

RESUMO

Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.


Assuntos
Proteínas do Capsídeo/metabolismo , Potyvirus/ultraestrutura , Vírion/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Potyvirus/metabolismo , Espalhamento a Baixo Ângulo , Vírion/metabolismo , Difração de Raios X
7.
BMC Genomics ; 21(1): 18, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906869

RESUMO

BACKGROUND: Potato virus Y (PVY) is a major pathogen of potatoes with major impact on global agricultural production. Resistance to PVY can be achieved by engineering potatoes to express a recessive, resistant allele of eukaryotic translation initiation factor eIF4E, a host dependency factor essential to PVY replication. Here we analyzed transcriptome changes in eIF4E over-expressing potatoes to shed light on the mechanism underpinning eIF4E-mediated recessive PVY resistance. RESULTS: As anticipated, modified eIF4E-expressing potatoes demonstrated a high level of resistance, eIF4E expression, and an unexpected suppression of the susceptible allele transcript, likely explaining the bulk of the potent antiviral phenotype. In resistant plants, we also detected marked upregulation of genes involved in cell stress responses. CONCLUSIONS: Our results reveal a previously unanticipated second layer of signaling attributable to eIF4E regulatory control, and potentially relevant to establishment of a broader, more systematic antiviral host defense.


Assuntos
Resistência à Doença/genética , Fator de Iniciação 4E em Eucariotos/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Alelos , Capsicum/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes Recessivos , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Potyvirus/genética , Potyvirus/fisiologia , Transdução de Sinais/genética , Solanum tuberosum/virologia
8.
Mol Biol (Mosk) ; 52(6): 1055-1065, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30633248

RESUMO

This paper reports on a complex structural analysis of the potato virus A coat protein using a set of complementary physico-chemical methods. We have demonstrated previously that this protein does not exist as individual subunits in solution and undergoes association into oligomers with subsequent transition to ß-conformation. The purpose of the present work was to study the possible mechanisms of this transformation and to search for methods that dissociate protein oligomers. To analyze the low resolution protein structure in solution, small-angle X-ray scattering was used. Stable particles representing clusters of 30 coat protein subunits were present even in an aqueous salt solution with a high ionic strength and pH (pH 10.5; 0.5 M NaCl). The particles did not dissociate in the presence of 10 mM dextran sulfates (15 and 100 kDa). Dissociation in the presence of 5.2 mM sodium dodecyl sulfate results in the formation of the subunit-detergent complexes consisting of 10-12 small particles joined together like "beads on a string". Similar effects of sodium dodecyl sulfate were shown for serum albumins (bovine and human). Denaturation of the potato virus A coat protein molecules occurs in the presence of detergent concentrations that are seven times lower than that in albumins (5.2 and 35 mM), which confirms low stability of the potato virus A coat protein. Using spectral methods, preservation of the secondary structure and loss of the tertiary structure of the protein in its complex with sodium dodecyl sulfate have been demonstrated. Possible mechanism for protein particle formation through the interaction between unordered terminal domains and their transformation into ß-structures has been suggested.


Assuntos
Proteínas do Capsídeo/química , Potyvirus/química , Estrutura Secundária de Proteína , Animais , Bovinos , Humanos , Desnaturação Proteica , Dodecilsulfato de Sódio
9.
Mol Plant ; 16(3): 632-642, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597359

RESUMO

RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals. However, it is not known whether two other RNA quality control pathways, nonstop decay and no-go decay, are capable of restricting viruses in plants. Here, we show that the evolutionarily conserved Pelota-Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae (termed potyvirids), the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide. Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron, which is conserved in almost all potyvirids. This allows Pelota to target the virus and act as a viral restriction factor. Furthermore, Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta. Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation. These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Sumoilação , RNA , Plantas , Potyvirus
10.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890472

RESUMO

We report the first complete genome sequence of an isolate of Passiflora chlorosis virus (PaCV), a member of the Potyviridae family, identified in passion fruit (Passiflora edulis Sims) plants grown in Israel. The assembled genome is 9672 nucleotides long and encodes a 3084 amino acids polyprotein that is predicted to be proteolytically cleaved into 10 mature peptides. Our analysis of the genome sequence shows that PaCV is a distinct species, sharing 68.5% nucleotide sequence identity and 71.5% amino acid sequence identity with isolates of the bean common mosaic necrosis virus (BCMNV), the most closely related virus classified within the genus Potyvirus. Using quantitative PCR, we detected the virus in RNA samples from leaves exhibiting symptoms of infection, with higher levels in clearly chlorotic leaves, but not in those from healthy leaves.

11.
Viruses ; 14(5)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632588

RESUMO

Narcissus degeneration virus (NDV), narcissus late season yellows virus (NLSYV) and narcissus yellow stripe virus (NYSV), which belong to the genus Potyvirus of the family Potyviridae, cause significant losses in the ornamental value and quality of narcissus. Several previous studies have explored the genetic diversity and evolution rate of narcissus viruses, but the analysis of the synonymous codons of the narcissus viruses is still unclear. Herein, the coat protein (CP) of three viruses is used to analyze the viruses' phylogeny and codon usage pattern. Phylogenetic analysis showed that NYSV, NDV and NLSYV isolates were divided into five, three and five clusters, respectively, and these clusters seemed to reflect the geographic distribution. The effective number of codon (ENC) values indicated a weak codon usage bias in the CP coding region of the three narcissus viruses. ENC-plot and neutrality analysis showed that the codon usage bias of the three narcissus viruses is all mainly influenced by natural selection compared with the mutation pressure. The three narcissus viruses shared the same best optimal codon (CCA) and the synonymous codon prefers to use codons ending with A/U, compared to C/G. Our study shows the codon analysis of different viruses on the same host for the first time, which indicates the importance of the evolutionary-based design to control these viruses.


Assuntos
Narcissus , Potyvirus , Códon , Uso do Códon , Narcissus/genética , Filogenia , Potyvirus/genética
12.
Mol Plant Pathol ; 23(11): 1640-1657, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35989243

RESUMO

Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus-specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive-sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative-sense RNA strand is cleaved by the amiRNA-guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.


Assuntos
MicroRNAs , Vírus Eruptivo da Ameixa , Antivirais , Genômica , MicroRNAs/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Vírus Eruptivo da Ameixa/genética , Interferência de RNA , RNA Viral/genética , Nicotiana/genética
13.
Pathogens ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430063

RESUMO

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016-2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.

14.
Plants (Basel) ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34579467

RESUMO

Zucchini Yellow Mosaic Virus (ZYMV) is an aphid-transmitted potyvirus that causes severe yield losses in squash (Cucurbita moschata) production worldwide. Development of resistant cultivars using traditional breeding approaches relies on rigorous and resource-intensive phenotypic assays. QTL-seq, a whole genome re-sequencing based bulked segregant analysis, is a powerful tool for mapping quantitative trait loci (QTL) in crop plants. In the current study, the QTL-seq approach was used to identify genetic loci associated with ZYMV resistance in an F2 population (n = 174) derived from a cross between Nigerian Local (resistant) and Butterbush (susceptible). Whole genome re-sequencing of the parents and bulks of resistant and susceptible F2 progeny revealed a mapping rate between 94.04% and 98.76%, and a final effective mapping depth ranging from 81.77 to 101.73 across samples. QTL-seq analysis identified four QTLs significantly (p < 0.05) associated with ZYMV resistance on chromosome 2 (QtlZYMV-C02), 4 (QtlZYMV-C04), 8 (QtlZYMV-C08) and 20 (QtlZYMV-C20). Seven markers within the QTL intervals were tested for association with ZYMV resistance in the entire F2 population. For QtlZYMV-C08, one single nucleotide polymorphism (SNP) marker (KASP-6) was found to be significantly (p < 0.05) associated with ZYMV resistance, while two SNPs (KASP-1 and KASP-3) and an indel (Indel-2) marker were linked to resistance within QtlZYMV-C20. KASP-3 and KASP-6 are non-synonymous SNPs leading to amino acid substitutions in candidate disease resistant gene homologs on chromosomes 20 (CmoCh20G003040.1) and 8 (CmoCh08G007140.1), respectively. Identification of QTL and SNP markers associated with ZYMV resistance will facilitate marker-assisted selection for ZYMV resistance in squash.

15.
Viruses ; 12(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979012

RESUMO

Combining plant resistance against virus and vector presents an attractive approach to reduce virus transmission and virus proliferation in crops. RestrictedTobacco-etch virus Movement (RTM) genes confer resistance to potyviruses by limiting their long-distance transport. Recently, a close homologue of one of the RTM genes, SLI1, has been discovered but this gene instead confers resistance to Myzus persicae aphids, a vector of potyviruses. The functional connection between resistance to potyviruses and aphids, raises the question whether plants have a basic defense system in the phloem against biotic intruders. This paper provides an overview on restricted potyvirus phloem transport and restricted aphid phloem feeding and their possible interplay, followed by a discussion on various ways in which viruses and aphids gain access to the phloem sap. From a phloem-biological perspective, hypotheses are proposed on the underlying mechanisms of RTM- and SLI1-mediated resistance, and their possible efficacy to defend against systemic viruses and phloem-feeding vectors.


Assuntos
Afídeos/virologia , Resistência à Doença/genética , Genes Virais , Insetos Vetores/virologia , Floema/virologia , Potyvirus/genética , Animais , Interações entre Hospedeiro e Microrganismos , Floema/fisiologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade
16.
GM Crops Food ; 11(4): 185-205, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280681

RESUMO

Crop improvement through transgenic technologies is commonly tagged with GMO (genetically-modified-organisms) where the presence of transgene becomes a big question for the society and the legislation authorities. However, new plant breeding techniques like CRISPR/Cas9 system [clustered regularly interspaced palindromic repeats (CRISPR)-associated 9] can overcome these limitations through transgene-free products. Potato (Solanum tuberosum L.) being a major food crop has the potential to feed the rising world population. Unfortunately, the cultivated potato suffers considerable production losses due to several pre- and post-harvest stresses such as plant viruses (majorly RNA viruses) and cold-induced sweetening (CIS; the conversion of sucrose to glucose and fructose inside cell vacuole). A number of strategies, ranging from crop breeding to genetic engineering, have been employed so far in potato for trait improvement. Recently, new breeding techniques have been utilized to knock-out potato genes/factors like eukaryotic translation initiation factors [elF4E and isoform elF(iso)4E)], that interact with viruses to assist viral infection, and vacuolar invertase, a core enzyme in CIS. In this context, CRISPR technology is predicted to reduce the cost of potato production and is likely to pass through the regulatory process being marker and transgene-free. The current review summarizes the potential application of the CRISPR/Cas9 system for traits improvement in potato. Moreover, the prospects for engineering resistance against potato fungal pathogens and current limitations/challenges are discussed.


Assuntos
Vírus de Plantas , Solanum tuberosum/genética , Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética
17.
Viruses ; 12(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979056

RESUMO

In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.


Assuntos
Evolução Molecular , Filogenia , Doenças das Plantas/virologia , Potyvirus/genética , Animais , Afídeos/virologia , Metagenoma , Potyvirus/classificação
18.
Viruses ; 12(7)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708998

RESUMO

Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission, and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid-transmitted potyviruses to global agriculture.


Assuntos
Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/fisiologia , Agricultura , Animais , Afídeos/fisiologia , Variação Genética , Genômica , Insetos Vetores/virologia , Proteômica
19.
Viruses ; 12(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322703

RESUMO

The potato was introduced to Europe from the Andes of South America in the 16th century, and today it is grown worldwide; it is a nutritious staple food eaten by millions and underpins food security in many countries. Unknowingly, potato virus Y (PVY) was also introduced through trade in infected potato tubers, and it has become the most important viral pathogen of potato. Phylogenetic analysis has revealed the spread and emergence of strains of PVY, including strains causing economically important diseases in tobacco, tomato and pepper, and that the virus continues to evolve with the relatively recent emergence of new damaging recombinant strains. High-throughput, next-generation sequencing platforms provide powerful tools for detection, identification and surveillance of new PVY strains. Aphid vectors of PVY are expected to increase in incidence and abundance in a warmer climate, which will increase the risk of virus spread. Wider deployment of crop cultivars carrying virus resistance will be an important means of defence against infection. New cutting-edge biotechnological tools such as CRISPR and SIGS offer a means for rapid engineering of resistance in established cultivars. We conclude that in future, human activities and ingenuity should be brought to bear to control PVY and the emergence of new strains in key crops by increased focus on host resistance and factors driving virus evolution and spread.


Assuntos
Produtos Agrícolas/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Potyvirus/classificação , Solanum tuberosum/virologia , Resistência à Doença , Suscetibilidade a Doenças , Meio Ambiente , Genoma Viral , Técnicas de Diagnóstico Molecular , Epidemiologia Molecular , Potyvirus/genética , Estresse Fisiológico
20.
Plant Pathol J ; 36(1): 87-97, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32089664

RESUMO

The development of reverse transcription-polymerase chain reaction using degenerate primers against conserved regions of most potyviral genomes enabled sampling of the potyvirome. However, these assays usually involve sampling potential host plants, but identifying infected plants when they are asymptomatic is challenging, and many plants, especially wild ones, contain inhibitors to DNA amplification. We used an alternative approach which utilized aphid vectors and indicator plants to identify potyviruses capable of infecting common bean (Phaseolus vulgaris). Aphids were collected from a range of asymptomatic leguminous weeds and trees in Iran, and transferred to bean seedlings under controlled conditions. Bean plants were tested serologically for potyvirus infections four-weeks post-inoculation. The serological assay and symptomatology together indicated the presence of one potyvirus, and symptomology alone implied the presence of an unidentified virus. The partial genome of the potyvirus, encompassing the complete coat protein gene, was amplified using generic potyvirus primers. Sequence analysis of the amplicon confirmed the presence of an isolate of Wisteria vein mosaic virus (WVMV), a virus species not previously identified from Western Asia. Phylogenetic analyses of available WVMV sequences categorized them into five groups: East Asian-1 to 3, North American and World. The Iranian isolate clustered with those in the World group. Multiple sequence alignment indicated the presence of some genogroup-specific amino acid substitutions among the isolates studied. Chinese isolates were sister groups of other isolates and showed higher nucleotide distances as compared with the others, suggesting a possible Eastern-Asian origin of WVMV, the main region where Wisteria might have originated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA