Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuropathology ; 42(6): 488-504, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35701899

RESUMO

The formation of misfolded protein aggregates is one of the pathological hallmarks of neurodegenerative diseases. We have previously demonstrated the cytoplasmic aggregate formation of adenovirally expressed transactivation response DNA-binding protein of 43 kDa (TDP-43), the main constituent of neuronal cytoplasmic aggregates in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), in cultured neuronal cells under the condition of proteasome inhibition. The TDP-43 aggregate formation was markedly suppressed by co-infection of adenoviruses expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response, and Praja1 RING-finger E3 ubiquitin ligase (PJA1) located downstream of the HSF1 pathway. In the present study, we examined other reportedly known E3 ubiquitin ligases for TDP-43, i.e. Parkin, RNF112 and RNF220, but failed to find their suppressive effects on neuronal cytoplasmic TDP-43 aggregate formation, although they all bind to TDP-43 as verified by co-immunoprecipitation. In contrast, PJA1 also binds to adenovirally expressed wild-type and mutated fused in sarcoma, superoxide dismutase 1, α-synuclein and ataxin-3, and huntingtin polyglutamine proteins in neuronal cultures and suppressed the aggregate formation of these proteins. These results suggest that PJA1 is a common sensing factor for aggregate-prone proteins to counteract their aggregation propensity, and could be a potential therapeutic target for neurodegenerative diseases that include ALS, FTLD, Parkinson's disease and polyglutamine diseases.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Ubiquitina-Proteína Ligases , Esclerose Lateral Amiotrófica/patologia , Degeneração Lobar Frontotemporal/patologia , Fatores de Transcrição de Choque Térmico , Agregados Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais
2.
Neuropathology ; 40(6): 570-586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686212

RESUMO

Transactivation response DNA-binding protein of 43 kDa (TDP-43) is a major constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We have previously shown neuronal cytoplasmic aggregate formation induced by recombinant adenoviruses expressing human wild-type and C-terminal fragment (CTF) TDP-43 under the condition of proteasome inhibition in vitro and in vivo. In the present study, we demonstrated that the formation of the adenoviral TDP-43 aggregates was markedly suppressed in rat neural stem cell-derived neuronal cells by co-infection of an adenovirus expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response. We performed DNA microarray analysis and searched several candidate molecules, located downstream of HSF1, which counteract TDP-43 aggregate formation. Among these, we identified Praja 1 RING-finger E3 ubiquitin ligase (PJA1) as a suppressor of phosphorylation and aggregate formation of TDP-43. Co-immunoprecipitation assay revealed that PJA1 binds to CTF TDP-43 and the E2-conjugating enzyme UBE2E3. PJA1 also suppressed formation of cytoplasmic phosphorylated TDP-43 aggregates in mouse facial motor neurons in vivo. Furthermore, phosphorylated TDP-43 aggregates were detected in PJA1-immunoreactive human ALS motor neurons. These results indicate that PJA1 is one of the principal E3 ubiquitin ligases for TDP-43 to counteract its aggregation propensity and could be a potential therapeutic target for ALS and FTLD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Citoplasma/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Camundongos , Ratos , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
3.
Biochim Biophys Acta ; 1833(10): 2190-200, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23688634

RESUMO

Transcription factor FOXP3 (forkhead box P3) is found initially as a key regulator in regulatory T cells. Recently its expression has been demonstrated in some non-lymphoid normal and cancerous cells. Now FOXP3 has been proven to regulate cancer-related genes, especially suppressor genes in breast cancer. But the mechanisms by which FOXP3 regulates suppressor genes are not fully determined. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. The overexpression of FOXP3 weakened Ezh2's enhancement on the mammosphere formation, cell proliferation, directional migration, and colony forming ability of T47D cells. We demonstrated that FOXP3 could downregulate Ezh2 protein level and this depended on not only the FOXP3 expression amount, but also the nuclear localization of FOXP3. More importantly, we demonstrated FOXP3 accelerated Ezh2 protein degradation through the polyubiquitination-proteasome pathway by enhancing the transcription of E3 ligase Praja1 directly. These results provided a new mechanism for FOXP3 in histone modifications as an Ezh2 suppressor and supported new evidence for FOXP3 as a tumor suppressor in breast cancer.


Assuntos
Neoplasias da Mama/genética , Montagem e Desmontagem da Cromatina/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 2/genética , Animais , Animais Recém-Nascidos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Proteína Potenciadora do Homólogo 2 de Zeste , Epigenômica , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Complexo Repressor Polycomb 2/metabolismo , Poliubiquitina/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas/genética , Proteínas/metabolismo , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cicatrização
4.
Artigo em Inglês | MEDLINE | ID: mdl-36528254

RESUMO

1-Stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) interacts with and activates Praja-1 E3 ubiquitin-protein ligase (full length: 615 aa) to ubiquitinate and degrade the serotonin transporter (SERT). SERT modulates serotonergic system activity and is a therapeutic target for depression, autism, obsessive-compulsive disorder, schizophrenia and Alzheimer's disease. Moreover, diacylglycerol kinase (DGK) δ2 (full length: 1214 aa) interacts with Praja-1 in addition to SERT and generates 18:0/22:6-PA, which binds and activates Praja-1. In the present study, we investigated the interaction of Praja-1 with 18:0/22:6-PA and DGKδ2 in more detail. We first found that the N-terminal one-third region (aa 1-224) of Praja-1 bound to 18:0/22:6-PA and that Lys141 in the region was critical for binding to 18:0/22:6-PA. In contrast, the C-terminal catalytic domain of Praja-1 (aa 446-615) interacted with DGKδ2. Additionally, the N-terminal half of the catalytic domain (aa 309-466) of DGKδ2 intensely bound to Praja-1. Moreover, the N-terminal region containing the pleckstrin homology and C1 domains (aa 1-308) and the C-terminal half of the catalytic domain (aa 762-939) of DGKδ2 weakly associated with Praja-1. Taken together, these results reveal new functions of the N-terminal (aa 1-224) and C-terminal (aa 446-615) regions of Praja-1 and the N-terminal half of the catalytic region (aa 309-466) of DGKδ2 as regulatory domains. Moreover, it is likely that the DGKδ2-Praja-1-SERT heterotrimer proximally arranges the 18:0/22:6-PA-producing catalytic domain of DGKδ2, the 18:0/22:6-PA-binding regulatory domain of Praja-1, the ubiquitin-protein ligase catalytic domain of Praja-1 and the ubiquitination acceptor site-containing SERT C-terminal region.


Assuntos
Diacilglicerol Quinase , Ácidos Docosa-Hexaenoicos , Diacilglicerol Quinase/metabolismo , Ácidos Fosfatídicos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Artigo em Inglês | MEDLINE | ID: mdl-31891772

RESUMO

Brain-specific diacylglycerol kinase (DGK) δ-knockout mice exhibited serotonin transporter (SERT) inhibitor-sensitive obsessive-compulsive disorder-like behaviors. Moreover, SERT protein levels were markedly increased in the DGKδ-deficient brain. However, its molecular mechanisms remain unclear. We found that the catalytic subdomain-a and the coiled-coil structure-containing region of DGKδ interacted with the C-terminal cytoplasmic region (CTC) of SERT. Moreover, the protein levels of full-length SERT and SERT-CTC alone were significantly decreased by DGKδ in a catalytic activity-dependent manner. A proteasome inhibitor, MG-132, inhibited DGKδ-dependent SERT degradation. Notably, DGKδ interacted with MAGE-D1 adaptor protein and Praja-1 E3 ubiquitin-protein ligase, and enhanced the ubiquitination of SERT through Praja-1. Taken together, these results indicate that DGKδ interacts with SERT and induces SERT degradation in an activity-dependent manner through the Praja-1 ubiquitin ligase-proteasome system. These new findings provide novel insights into serotonergic system regulation and the pathophysiology/therapeutics of serotonin-/SERT-related diseases such as obsessive-compulsive disorder, depression, autism and schizophrenia.


Assuntos
Diacilglicerol Quinase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ubiquitinação , Animais , Células COS , Chlorocebus aethiops , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
6.
FEBS Lett ; 594(11): 1787-1796, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134507

RESUMO

Serotonin transporter (SERT) is involved in serotonergic system regulation and in the pathophysiology/therapeutics of serotonin-/SERT-related diseases such as obsessive-compulsive disorder, depression, autism, and schizophrenia. We recently revealed that diacylglycerol (DG) kinase (DGK) δ induces ubiquitination/degradation of SERT in a DGK activity-dependent manner through Praja-1 E3 ubiquitin-protein ligase. However, it is still unclear how Praja-1 activity is regulated by DGKδ. Here, we reveal that 1-stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) and 18:0/22:6-DG are simultaneously decreased and accumulated, respectively, in the DGKδ-knockout mouse brain, indicating that DGKδ selectively phosphorylates 18:0/22:6-DG to generate 18:0/22:6-PA. Moreover, we find that 18:0/22:6-PA selectively binds to Praja-1 and enhances its activity. These results strongly suggest that 18:0/22:6-PA generated by DGKδ activates Praja-1 to degrade SERT in the brain.


Assuntos
Encéfalo/metabolismo , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Diacilglicerol Quinase/metabolismo , Ativação Enzimática , Masculino , Camundongos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA