Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
RNA ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095083

RESUMO

The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use general established rules. We present a dataset with 4 cell lines and combinations for SMG5, SMG6 and SMG7 knockdowns or SMG7 knockout. Based on this dataset, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information from Ensembl, Gencode consensus RiboSeq ORFs and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which, 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon and 6,433 are significantly upregulated in three or more comparisons of NMD active vs deficient cell lines. We present an in-depth view on these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.

2.
Toxicol Appl Pharmacol ; 482: 116771, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013149

RESUMO

The unintended environmental exposure of vultures to diclofenac has resulted in the deaths of millions of old-world vultures on the Asian subcontinent. While toxicity has been since associated with a long half-life of elimination and zero order metabolism, the actual constraint in biotransformation is yet to be clarified. For this study we evaluated if the evident zero order metabolism could be due to defects in the CYP2C9/2C19 enzyme system. For this, using whole genome sequencing and de-novo transcriptome alignment, the vulture CYP2C19 open reading frame was identified through Splign analysis. The result sequence analysis revealed the presence of a premature stop codon on intron 7 of the identified open reading frame. Even if the stop codon was not present, amino acid residue analysis tended to suggest that the enzyme would be lower in activity than the equivalent human enzyme, with differences present at sites 105, 286 and 289. The defect was also conserved across the eight non-related vultures tested. From these results, we conclude that the sensitivity of the old-world vultures to diclofenac is due to the non-expression of a viable CYP2C19 enzyme system. This is not too dissimilar to the effects seen in certain people with a similar defective enzyme.


Assuntos
Diclofenaco , Falconiformes , Animais , Humanos , Diclofenaco/toxicidade , Diclofenaco/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Anti-Inflamatórios não Esteroides/metabolismo , Códon sem Sentido/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Falconiformes/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373288

RESUMO

Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.


Assuntos
Listeria monocytogenes , Listeriose , Gravidez , Feminino , Humanos , Idoso , Listeria monocytogenes/genética , Virulência/genética , Microbiologia de Alimentos , Proteínas de Bactérias/genética , Códon sem Sentido
4.
Exp Eye Res ; 201: 108274, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017612

RESUMO

The prevalence of nonsense mutations as a class within genetic diseases such as inherited retinal disorders (IRDs) presents an opportunity to develop a singular, common therapeutic agent for patients whose treatment options are otherwise limited. We propose a novel approach to addressing IRDs utilizing Eukaryotic Ribosome Selective Glycosides, ELX-01 and ELX-06, delivered to the eye by intravitreal (IVT) injection. We assessed read-through activity in vitro using a plasmid-based dual luciferase assay and in vivo in a mouse model of oculocutaneous albinism type 2. These models interrogate a naturally occurring R262X nonsense mutation in the OCA2 gene. ELX-01 and ELX-06 both produced a concentration-dependent increase in read-through of the OCA2 R262X mutation in the dual luciferase assay, with an effect at the top concentration which is superior to both gentamicin and G418. When testing both compounds in vivo, a single IVT injection produced a dose-dependent increase in melanin, consistent with compound read-through activity and functional restoration of the Oca2 protein. These results establish that ELX-01 and ELX-06 produce read-through of a premature stop codon in the OCA2 gene both in vitro and in vivo. The in vivo results suggest that these compounds can be dosed IVT to achieve read-through at the back of the eye. These data also suggest that ELX-01 or ELX-06 could serve as a common therapeutic agent across nonsense mutation-mediated IRDs and help to establish a target exposure range for development of a sustained release IVT formulation.


Assuntos
Códon sem Sentido , DNA/genética , Proteínas do Olho/genética , Furanos/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Injeções Intravítreas , Camundongos , Doenças Retinianas/genética , Doenças Retinianas/metabolismo
5.
Pediatr Nephrol ; 35(11): 2031-2042, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807928

RESUMO

The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Nefropatias/tratamento farmacológico , Aminoglicosídeos/farmacocinética , Antibacterianos/farmacocinética , Códon sem Sentido/efeitos dos fármacos , Humanos , Nefropatias/genética
6.
Anim Genet ; 51(1): 106-110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31729055

RESUMO

The sequencing of the pig genome revealed the existence of homozygous individuals for a nonsense mutation in the argininosuccinate synthase 1 (ASS1) gene (rs81212146, c.944T>A, L315X). Paradoxically, an AA homozygous genotype for this polymorphism is expected to abolish the function of the ASS1 enzyme that participates in the urea cycle, leading to citrullinemia, hyperammonemia, coma and death. Sequencing of five Duroc boars that sired a population of 350 Duroc barrows revealed the segregation of the c.944T>A polymorphism, so we aimed to investigate its phenotypic consequences. Genotyping of this mutation in the 350 Duroc barrows revealed the existence of seven individuals homozygous (AA) for the nonsense mutation. These AA pigs had a normal weight despite the fact that mild citrullinemia often involves impaired growth. Sequencing of the region surrounding the mutation in TT, TA and AA individuals revealed that the A substitution in the second position of the codon (c.944T>A) is in complete linkage disequilibrium with a C replacement (c.943T>C) in the first position of the codon. This second mutation would compensate for the potentially damaging effect of the c.944T>A replacement. In fact, this is the most probable reason why pigs with homozygous AA genotypes at the 944 site of the ASS1 coding region are alive. Our results illustrate the complexities of predicting the consequences of nonsense mutations on gene function and phenotypes, not only because of annotation issues but also owing to the existence of genetic mechanisms that sometimes limit the penetrance of highly harmful mutations.


Assuntos
Argininossuccinato Sintase/genética , Genes Letais , Sus scrofa/genética , Animais , Citrulinemia/genética , Citrulinemia/veterinária , Códon sem Sentido , Genótipo , Homozigoto , Desequilíbrio de Ligação , Masculino
7.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289221

RESUMO

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Assuntos
Antibacterianos/farmacologia , Códon sem Sentido/genética , Gentamicinas/farmacologia , Mutação/efeitos dos fármacos , Aminopeptidases/genética , Antibacterianos/química , Linhagem Celular Tumoral , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Distrofina/genética , Gentamicinas/química , Humanos , Serina Proteases/genética , Tripeptidil-Peptidase 1 , Proteína Supressora de Tumor p53/genética
8.
Yi Chuan ; 42(4): 354-362, 2020 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-32312704

RESUMO

Nonsense-mediated mRNA decay (NMD) refers to the degradation of mRNA due to the presence of premature stop codon (PTC) on mRNA under pathological or physiological conditions. NMD is widely considered an mRNA-specific quality control process. Recently it was discovered that some PTCs do not trigger NMD in a variety of diseases - a process known as NMD escape; however, its exact mechanism remains unclear. At present, there are two widely accepted mechanistic hypotheses during NMD escape. The first is PTC read-through, in which protein translation undergoes PTC until the normal stop codon is encountered, producing a full-length protein. The second is translation reinitiation, in which protein translation recommences at the potential start codon downstream of PTC and terminates at the stop codon, producing an N-terminal truncated protein. Currently, an increasing number of drugs or small molecules that use PTC read-through have been successfully applied to treat nonsense variation-associated diseases. In this review, we summarize the NMD mechanism and discuss the application and progress in our understanding of NMD escape in disease therapy. This review should provide a useful framework to advance current understanding of the research and application of NMD escape.


Assuntos
Códon sem Sentido , Códon de Terminação , Degradação do RNAm Mediada por Códon sem Sentido , Humanos , RNA Mensageiro
9.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847104

RESUMO

Aldehyde dehydrogenase 3B2 (ALDH3B2) gene contains a premature termination codon, which can be skipped or suppressed resulting in full-length protein expression. Alternatively, the longest putative open reading frame starting with the second in-frame start codon would encode short isoform. No unequivocal evidence of ALDH3B2 expression in healthy human tissues is available. The aim of this study was to confirm its expression in human placenta characterized by the highest ALDH3B2 mRNA abundance. ALDH3B2 DNA and mRNA were sequenced. The expression was investigated using western blot. The identity of the protein was confirmed using mass spectrometry (MS). The predicted tertiary and quaternary structures, subcellular localization, and phosphorylation sites were assessed using bioinformatic analyses. All DNA and mRNA isolates contained the premature stop codon. In western blot analyses, bands corresponding to the mass of full-length protein were detected. MS analysis led to the identification of two unique peptides, one of which is encoded by the nucleotide sequence located upstream the second start codon. Bioinformatic analyses suggest cytoplasmic localization and several phosphorylation sites. Despite premature stop codon in DNA and mRNA sequences, full-length ALDH3B2 was found. It can be formed as a result of premature stop codon readthrough, complex phenomenon enabling stop codon circumvention.


Assuntos
Aldeído Oxirredutases , Códon sem Sentido , Regulação Enzimológica da Expressão Gênica , Placenta/enzimologia , Proteínas da Gravidez , Biossíntese de Proteínas , Aldeído Oxirredutases/biossíntese , Aldeído Oxirredutases/genética , Códon sem Sentido/genética , Códon sem Sentido/metabolismo , Feminino , Humanos , Espectrometria de Massas , Gravidez , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/genética
10.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698696

RESUMO

Brugada syndrome (BrS) is marked by coved ST-segment elevation and increased risk of sudden cardiac death. The genetics of this syndrome are elusive in over half of the cases. Variants in the SCN5A gene are the single most common known genetic unifier, accounting for about a third of cases. Research models, such as animal models and cell lines, are limited. In the present study, we report the novel NM_198056.2:c.1111C>T (p.Gln371*) heterozygous variant in the SCN5A gene, as well as its segregation with BrS in a large family. The results herein suggest a pathogenic effect of this variant. Functional studies are certainly warranted to characterize the molecular effects of this variant.


Assuntos
Síndrome de Brugada/genética , Códon sem Sentido/genética , Estudos de Associação Genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Sequência de Bases , Síndrome de Brugada/diagnóstico por imagem , Simulação por Computador , Família , Feminino , Heterozigoto , Humanos , Masculino , Linhagem
11.
Hemoglobin ; 42(4): 276-277, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30422720

RESUMO

Codon 14 (+T) (HBB: c.44_45insT) is a very rare ß-thalassemia (ß-thal) mutation previously reported in three ß-thal major (ß-TM) patients of Azerbaijani origin. None of the previous reports described the genotype-phenotype correlation of the mutation. We here report the first case of homozygous codon 14 together with data of the heterozygous parents.


Assuntos
Mutação da Fase de Leitura , Talassemia beta/genética , Azerbaijão , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Masculino , Pais , Linhagem
12.
Biol Reprod ; 96(5): 939-947, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444146

RESUMO

Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts-either premature termination codons or unusually long 3΄ untranslated regions (UTRs)-and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/genética , Testículo/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Códon sem Sentido , Humanos , Masculino , Espermatogênese/genética
13.
BMC Genet ; 18(1): 69, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732471

RESUMO

BACKGROUND: Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. RESULTS: Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. CONCLUSIONS: A putative frameshift deletion and CNV in chicken NRG3 are structural mutations that occurred before the establishment of commercial chicken lines. Our results further suggest that the putative frameshift deletion in exon 2 may potentially affect the expression level of particular isoforms of chicken NRG3.


Assuntos
Proteínas Aviárias/genética , Variações do Número de Cópias de DNA , Mutação da Fase de Leitura , Perfilação da Expressão Gênica/métodos , Neurregulinas/genética , Deleção de Sequência , Animais , Sequência de Bases , Galinhas , Éxons , Fenótipo , Isoformas de Proteínas/genética
14.
J Appl Microbiol ; 121(2): 569-76, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27238881

RESUMO

AIMS: The aim of this study was to assess the potential risk posed to the human population by the presence of Listeria monocytogenes serotype 1/2c in food based on the characterization of virulence factors of Listeria involved in the invasion of host cells and sensitivity to antimicrobial agents. METHODS AND RESULTS: In addition to sequencing of the inlA and inlB genes, the presence of genes lapB, aut, fbpA, ami, vip and llsX was tested. A premature stop codon (PMSC) in the inlA gene was detected in all tested strains of serotype 1/2c and, concurrently, two novel PMSC mutation types were identified. However, neither PMSC in the inlB gene nor deletion of the lapB, aut, fbpA, ami and vip genes were found in any of the strains. The presence of the llsX gene was not confirmed. Even though all L. monocytogenes strains showed sensitivity to the tested antimicrobials on the basis of their phenotype, sequencing revealed the presence of IS1542 insertion in the inlA gene, indicating the possibility of sharing of mobile genetic elements associated with antimicrobial resistance among strains. CONCLUSIONS: Other than the presence of PMSCs in the inlA gene, no PMSC in inlB or deletion of other factors linked to the invasiveness of listeria were detected. Tested strains showed sensitivity to antibiotics used in the therapy of listeriosis. SIGNIFICANCE AND IMPACT OF THE STUDY: Strains of L. monocytogenes serotype 1/2c typically carry a PMSC in the inlA gene, but these strains still represent a potential threat to public health. The possibility of transfer of IS1542, associated with resistance to vancomycin, between enterococci and Listeria spp. was revealed.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Códon sem Sentido , Farmacorresistência Bacteriana , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/metabolismo , Fenótipo , Sorogrupo , Fatores de Virulência/genética
15.
J Cell Sci ; 126(Pt 12): 2551-60, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23729740

RESUMO

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive research has identified a conserved repertoire of NMD factors, these studies have been performed with a restricted set of genes and gene constructs with relatively few exons. As a consequence, NMD mechanisms are poorly understood for genes with large 3' terminal exons, and the applicability of the current models to large multi-exon genes is not clear. In this Commentary, we present an overview of the current understanding of NMD and discuss how analysis of nonsense mutations in the collagen gene family has provided new mechanistic insights into this process. Although NMD of the collagen genes with numerous small exons is consistent with the widely accepted exon-junction complex (EJC)-dependent model, the degradation of Col10a1 transcripts with nonsense mutations cannot be explained by any of the current NMD models. Col10a1 NMD might represent a fail-safe mechanism for genes that have large 3' terminal exons. Defining the mechanistic complexity of NMD is important to allow us to understand the pathophysiology of the numerous genetic disorders caused by PTC mutations.


Assuntos
Códon sem Sentido , Colágeno/genética , Degradação do RNAm Mediada por Códon sem Sentido , Estabilidade de RNA/genética , RNA/genética , RNA/metabolismo , Animais , Colágeno/metabolismo , Éxons , Humanos , Biossíntese de Proteínas
16.
Fungal Genet Biol ; 85: 7-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514742

RESUMO

Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.


Assuntos
Processamento Alternativo , Helminthosporium/genética , Spliceossomos/genética , Sequência Conservada , Íntrons/genética , RNA Mensageiro/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-26087060

RESUMO

Protein termination is an important cellular process. Protein termination relies on the stop-codons in the mRNA interacting properly with the releasing factors on the ribosome. One third of inherited diseases, including cancers, are associated with the mutation of the stop-codons. Many pathogens and viruses are able to manipulate their stop-codons to express their virulence. The influence of stop-codons is not limited to the primary reading frame of the genes. Stop-codons in the second and third reading frames are referred as premature stop signals (PSC). Stop-codons and PSCs together are collectively referred as stop-signals. The ratios of the stop-signals (referred as translation stop-signals ratio or TSSR) of genetically related bacteria, despite their great differences in gene contents, are much alike. This nearly identical Genomic-TSSR value of genetically related bacteria may suggest that bacterial genome expansion is limited by their unique stop-signals bias. We review the protein termination process and the different types of stop-codon mutation in plants, animals, microbes, and viruses, with special emphasis on the role of PSCs in directing bacterial evolution in their natural environments. Knowing the limit of genomic boundary could facilitate the formulation of new strategies in controlling the spread of diseases and combat antibiotic-resistant bacteria.


Assuntos
Bactérias/genética , Códon sem Sentido/genética , Doenças Genéticas Inatas/genética , Genoma Bacteriano , Neoplasias/genética , Biossíntese de Proteínas , Animais , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Evolução Biológica , Códon sem Sentido/metabolismo , Farmacorresistência Bacteriana/genética , Vírus/genética , Vírus/metabolismo
18.
Hemoglobin ; 39(6): 398-402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26329872

RESUMO

In the present study, a total of 11 individuals with hypochromic microcytic anemia who did not reveal the most common α-thalassemia (α-thal) deletions or mutations, were subjected to more investigations by DNA sequencing of the α-globin genes. Seven novel nondeletional α-thal mutations localized on the α2-globin gene in the heterozygous state were identified. These mutations either corrupted regulatory splice sites and consequently affected RNA processing or created unstable hemoglobin (Hb) variants. The mutations described here produced globin gene variants that lead to amino acid changes in critical regions of the globin chain. The clinical presentation of most patients was a persistent mild microcytic anemia similar to an α(+)-thal. In the last decade, numerous α-globin mutations have been observed leading to an α-thal phenotype and these studies have been considered to be important as discussed here.


Assuntos
Mutação , alfa-Globinas/genética , Talassemia alfa/genética , Adolescente , Adulto , Alelos , Criança , Biologia Computacional/métodos , Índices de Eritrócitos , Éxons , Feminino , Ordem dos Genes , Loci Gênicos , Heterozigoto , Humanos , Masculino , Fenótipo , Deleção de Sequência , Adulto Jovem , Talassemia alfa/sangue , Talassemia alfa/diagnóstico
19.
Biochem Biophys Res Commun ; 447(3): 503-7, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24735542

RESUMO

Inheritable colorectal cancers (CRC) accounted for about 20% of the CRC cases, such as hereditary nonpolyposis colorectal cancer (HNPCC), Gardner syndrome and familial adenomatous polyposis (FAP). A four-generation Han Chinese family was found affected with polyposis in colons. Inferred from the pedigree structure, the disease in this family showed an autosomal dominant inheritance model. To locate the causal mutations in this family, genomic DNAs were extracted and the next generation sequencing for 5 genes relating to colon cancer performed by Ion Torrent Personal Genome Machine with a 314 chip. The reads were aligned with human reference genome hg19 to call variants in the 5 genes. After analysis, 14 variants were detected in the sequenced sample and 13 been collected in dbSNP database and assigned with a rs identification number. In these variants, 9 were synonymous, 4 missense and 1 non-sense. In them, 2 rare variants (c.694C>T in APC and c.1690A>G in MSH2) might be the putative causal mutations for familial adenomatous polyposis (FAP) since the rarity of the mutated allele in normal controls. c.694C>T was detected in only affected members and generated a premature stop codon in APC. It should be a de novo germline mutation making APC containing this stop codon as targets for nonsense-mediated mRNA decay (NMD). c.1690A>G in MSH2 was not only detected in affected members, but also in normal ones in the family. Functional prediction revealed that the amino acid affected by this variant had no effect on the function of MSH2. Here, we report a de novo germline mutation of APC as the causal variant in a Chinese family with inheritable colon cancer by the next generation sequencing.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Povo Asiático/genética , China , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem
20.
Food Microbiol ; 39: 81-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24387856

RESUMO

The aims of this study were to characterize the different strains of Listeria monocytogenes collected at an Iberian pork processing plant and to investigate whether their specific characteristics were associated with prolonged survival in the plant. Using pulsed-field gel electrophoresis (PFGE), 29 PFGE types were previously identified during a three-year period. Eight of these PFGE types persisted in the plant during that period. In the present study, a subset of 29 PFGE type strains, which represented the 29 different PFGE types, was further characterized by assessing the potential virulence, and using motility, surface attachment, and antimicrobial susceptibility tests. After changing the disinfection procedures in the plant, the isolation rate of L. monocytogenes decreased, and only four of the 29 PFGE types, including three of the eight persistent PFGE types, were found the following year. These four "surviving" PFGE types included three from PCR serogroup IIa that were characterized by their low virulence mutations and low-level resistance to benzalkonium chloride (BAC). Furthermore, these PFGE types comprised the only BAC-resistant isolates found in the study, and they appear to have been selected due to the control of Listeria contamination. The resistance to increased sublethal concentrations of disinfectants may lead to prolonged survival of L. monocytogenes in food plants.


Assuntos
Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/instrumentação , Listeria monocytogenes/isolamento & purificação , Carne/microbiologia , Matadouros , Animais , Farmacorresistência Bacteriana , Contaminação de Alimentos/análise , Listeria monocytogenes/classificação , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Espanha , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA