Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822784

RESUMO

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Receptor Muscarínico M1/agonistas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Inibidores da Colinesterase/farmacologia , Cricetulus , Cristalização , Modelos Animais de Doenças , Cães , Donepezila/farmacologia , Eletroencefalografia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Dinâmica Molecular , Degeneração Neural/complicações , Degeneração Neural/patologia , Primatas , Ratos , Receptor Muscarínico M1/química , Transdução de Sinais , Homologia Estrutural de Proteína
2.
Annu Rev Genet ; 53: 117-147, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31537104

RESUMO

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


Assuntos
Mamíferos/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Bovinos , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Cabras/genética , Humanos , Camundongos , Polimorfismo Genético , Doenças Priônicas/etiologia , Proteínas Priônicas/metabolismo , Seleção Genética , Ovinos/genética
3.
Semin Immunol ; 60: 101651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36155944

RESUMO

Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.


Assuntos
Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Doenças Neurodegenerativas/metabolismo , Microglia , Macrófagos/metabolismo , Modelos Animais de Doenças , Encéfalo
4.
Proc Natl Acad Sci U S A ; 120(1): e2209815120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574660

RESUMO

The cellular prion protein (PrPC) converts to alternatively folded pathogenic conformations (PrPSc) in prion infections and binds neurotoxic oligomers formed by amyloid-ß α-synuclein, and tau. ß-Endoproteolysis, which splits PrPC into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2Sc) accumulates in the brain during prion infections, seemingly comprising the majority of PrPSc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrPC ß-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrPC's N-terminal domain. For wild-type mouse and human PrPC substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrPC were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2Sc and total PrPSc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrPC.


Assuntos
Proteínas PrPC , Doenças Priônicas , Príons , Camundongos , Animais , Humanos , Proteínas Priônicas/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Príons/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Peptídeo Hidrolases , Fibroblastos/metabolismo , Doenças Priônicas/metabolismo , Proteínas PrPC/química
5.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718859

RESUMO

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Chaperonas Moleculares , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Animais , Concentração de Íons de Hidrogênio , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/química , Agregados Proteicos
6.
J Biol Chem ; 300(6): 107310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657863

RESUMO

Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.


Assuntos
Cobre , Histidina , Proteínas Priônicas , Domínios Proteicos , Animais , Camundongos , Motivos de Aminoácidos , Cobre/metabolismo , Cobre/química , Histidina/metabolismo , Histidina/química , Separação de Fases , Proteínas Priônicas/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética
7.
J Biol Chem ; 299(2): 102823, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565989

RESUMO

The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.


Assuntos
Western Blotting , Fragmentos de Peptídeos , Proteínas PrPC , Proteólise , Animais , Camundongos , Western Blotting/métodos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Encéfalo/metabolismo
8.
J Biol Chem ; 299(11): 105329, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805139

RESUMO

Prion diseases are a group of transmissible neurodegenerative diseases primarily caused by the conformational conversion of prion protein (PrP) from α-helix-dominant cellular prion protein (PrPC) to ß-sheet-rich pathological aggregated form of PrPSc in many mammalian species. Dogs exhibit resistance to prion diseases, but the mechanism behind the phenomenon remains poorly understood. Compared with human PrP and mouse PrP, dog PrP has two unique amino acid residues, Arg177 and Asp159. Because PrPC contains a low-complexity and intrinsically disordered region in its N-terminal domain, it undergoes liquid-liquid phase separation (LLPS) in vitro and forms protein condensates. However, little is known about whether these two unique residues modulate the formation of PrPC condensates. Here, using confocal microscopy, fluorescence recovery after photobleaching assays, thioflavin T binding assays, and transmission electron microscopy, we report that Arg177 and Asp159 from the dog PrP slow the LLPS of full-length human PrPC, shifting the equilibrium phase boundary to higher protein concentrations and inhibit amyloid formation of the human protein. In sharp contrast, His177 and Asn159 from the human PrP enhance the LLPS of full-length dog PrPC, shifting the equilibrium phase boundary to lower protein concentrations, and promote fibril formation of the canid protein. Collectively, these results demonstrate how LLPS and amyloid formation of PrP are inhibited by a single residue Arg177 or Asp159 associated with prion disease resistance, and how LLPS and fibril formation of PrP are promoted by a single residue His177 or Asn159. Therefore, Arg177/His177 and Asp159/Asn159 are key residues in modulating PrPC liquid-phase condensation.


Assuntos
Doenças Priônicas , Príons , Camundongos , Cães , Humanos , Animais , Proteínas Priônicas/metabolismo , Príons/metabolismo , Amiloide/química , Proteínas Amiloidogênicas , Mamíferos/metabolismo
9.
Neurobiol Dis ; 190: 106363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996040

RESUMO

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Camundongos , Humanos , Animais , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Príons/genética , Príons/metabolismo , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Encéfalo/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
10.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265285

RESUMO

Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.


Assuntos
Cervos , Doença de Emaciação Crônica , Feminino , Masculino , Animais , Estudos Epidemiológicos , Encéfalo , Análise por Conglomerados
11.
J Transl Med ; 22(1): 503, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802941

RESUMO

BACKGROUND: Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS: C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS: Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS: The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doenças Priônicas , Animais , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Proteínas PrPSc/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo
12.
Transfusion ; 64(6): 980-985, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650381

RESUMO

BACKGROUND: For many years, there has been concern about the risk of transmission of classic forms of Creutzfeldt-Jakob disease (CJD) by blood transfusion, particularly after the recognition of such transmission of variant CJD (vCJD). We report on a 28-year lookback study of recipients of blood from donors who subsequently developed CJD. METHODS: Patients with diagnosed CJD and a history of blood donation were identified. Blood centers were asked to provide information about the distribution of the donations and consignees were requested to provide information about the recipients of the donations. Vital status of each available recipient was determined and, if deceased, the reported cause(s) of death were obtained primarily from the National Death Index. All recipients included in the study database contributed person-time up to the last recorded review of vital status. RESULTS: There were 84 eligible donors who gave 3284 transfusable components, and it was possible to evaluate 1245 recipients, totaling 6495 person-years of observation. The mean observation period per recipient was 5.5 years with a maximum of 51 years. No case of CJD or prion disease was reported among the recipient population. DISCUSSION: The study suggests that CJD may not be transfusion-transmissible, a position in agreement with similar findings from two similar European reports amounting to an overall observation period of 15,500 person-years. These studies have supported the conclusion that the risk, if any, of transmission of CJD by blood products is extremely small and remains theoretical.


Assuntos
Doadores de Sangue , Síndrome de Creutzfeldt-Jakob , Reação Transfusional , Síndrome de Creutzfeldt-Jakob/transmissão , Síndrome de Creutzfeldt-Jakob/epidemiologia , Síndrome de Creutzfeldt-Jakob/etiologia , Humanos , Estados Unidos/epidemiologia , Reação Transfusional/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Doadores de Sangue/estatística & dados numéricos , Idoso , Adulto , Fatores de Risco , Transfusão de Sangue
13.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468258

RESUMO

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
14.
Bull Math Biol ; 86(7): 82, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837083

RESUMO

Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell death and the UPR is implicated in the progression of several NDs. In this paper, we develop a novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model is centered around a single neuron, with representative proteins P (healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two S's). The model takes the form of a coupled system of nonlinear reaction-diffusion equations with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to understand how possible drug therapies can alter the course of a prion disease. We find that decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most powerful modifications to reduce the mean UPR intensity and potentially moderate the disease progression.


Assuntos
Conceitos Matemáticos , Modelos Neurológicos , Neurônios , Doenças Priônicas , Resposta a Proteínas não Dobradas , Resposta a Proteínas não Dobradas/fisiologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Neurônios/metabolismo , Humanos , Animais , Dinâmica não Linear , Simulação por Computador , Príons/metabolismo , Análise Espaço-Temporal , Apoptose
15.
Neurol Sci ; 45(6): 2419-2422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578381

RESUMO

BACKGROUND: Literature reporting the onset of Creutzfeldt-Jakob disease (CJD) immediately after COVID-19 infection has strengthened a possible causal link between infection and neurodegeneration. Here, we report a novel case undergoing detailed neuropathological assessment. CASE REPORT: Two months after he had contracted SARS-CoV-2 infection, a 54-year-old man manifested a subacute onset of ataxia, headache, anosmia, and hallucinations, followed by rapidly progressive cognitive decline. Electroencephalography documented unspecific slowing with periodic polyphasic delta waves. Brain MRI showed hyperintensities of basal ganglia and thalami on DWI/FLAIR. CSF tested positive for the 14-3-3 protein, and prion seeding activity was demonstrated by the real-time quaking-induced conversion assay. The patient died 2 months after the neurologic onset. The neuropathological examination confirmed the diagnosis of CJD and ruled out COVID-19-related encephalitis. DISCUSSION: To disentangle the link between COVID-19 infection and CJD, neuropathology is essential determining the extent of changes related to both conditions. In our patient, we did not find any specific abnormality related to COVID-19. Our conclusion is in line with the current worldwide epidemiological data that do not show an increase in CJD cases since the beginning of the COVID-19 pandemic.


Assuntos
COVID-19 , Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/complicações , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , COVID-19/complicações , Evolução Fatal , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , SARS-CoV-2 , Imageamento por Ressonância Magnética
16.
BMC Geriatr ; 24(1): 12, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172703

RESUMO

BACKGROUND: Variant Creutzfeldt - Jakob disease (vCJD) arose from dietary contamination with bovine-spongiform-encephalopathy (BSE). Because of concerns that vCJD-cases might be missed in the elderly, a feasibility study of enhanced CJD surveillance on the elderly was begun in 2016. Recruitment was lower than predicted. We describe a review of the challenges encountered in that study: identification, referral, and recruitment, and the effects of actions based on the results of that review. METHODS: Review was conducted in 2017. Study data for all eligible cases identified and referred from one participating service (Anne Rowling clinic (ARC)) was curated and anonymised in a bespoke database. A questionnaire was sent out to all the clinicians in medicine of the elderly, psychiatry of old age and neurology (including ARC) specialties in NHS Lothian, exploring possible reasons for low recruitment. RESULTS: Sixty-eight cases were referred from the ARC (March 2016-September 2017): 25% were recruited. Most cases had been referred because of diagnostic uncertainty. No difference was seen between those recruited and the non-recruited, apart from age and referrer. Twelve of 60 participating clinicians completed the questionnaire: only 4 had identified eligible cases. High workload, time constraints, forgetting to refer, unfamiliarity with the eligibility criteria, and the rarity of eligible cases, were some of the reasons given. Suggestions as to how to improve referral of eligible cases included: regular email reminders, feedback to referrers, improving awareness of the study, visible presence of the study team, and integration of the study with other research oriented services. These results were used to increase recruitment but without success. CONCLUSION: Recruitment was lower than predicted. Actions taken following a review at 21 months did not lead to significant improvement; recruitment remained low, with many families/patients declining to take part (75%). In assessing the failure to improve recruitment, two factors need to be considered. Firstly, the initial referral rate was expected to be higher because of existing patients already known to the clinical services, with later referrals being only newly presenting patients. Secondly, the unplanned absence of a dedicated study nurse. Searching digital records/anonymised derivatives to identify eligible patients could be explored.


Assuntos
Síndrome de Creutzfeldt-Jakob , Humanos , Animais , Bovinos , Idoso , Estudos de Viabilidade , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiologia , Escócia
17.
J Infect Dis ; 227(12): 1386-1395, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36344485

RESUMO

BACKGROUND: Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent. METHODS: We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6). RESULTS: All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats. CONCLUSIONS: WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult.


Assuntos
Cervos , Doenças Priônicas , Scrapie , Doença de Emaciação Crônica , Animais , Ovinos , Scrapie/metabolismo , Scrapie/patologia , Cervos/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/veterinária , Proteínas PrPSc/metabolismo , Doença de Emaciação Crônica/metabolismo , Cabras/metabolismo
18.
J Biol Chem ; 298(10): 102430, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037966

RESUMO

Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt-Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23-230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.


Assuntos
Amiloide , Amiloidose , Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Polimorfismo Genético , Proteínas Priônicas , Humanos , Amiloide/genética , Amiloide/química , Amiloidose/genética , Síndrome de Creutzfeldt-Jakob/genética , Metionina/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Dobramento de Proteína , Valina/genética , Insônia Familiar Fatal/genética
19.
J Biol Chem ; 298(9): 102381, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973512

RESUMO

Conformational conversion of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases. However, the conversion mechanism remains to be elucidated. Here, we generated Tg(PrPΔ91-106)-8545/Prnp0/0 mice, which overexpress mouse PrP lacking residues 91-106. We showed that none of the mice became sick after intracerebral inoculation with RML, 22L, and FK-1 prion strains nor accumulated PrPScΔ91-106 in their brains except for a small amount of PrPScΔ91-106 detected in one 22L-inoculated mouse. However, they developed disease around 85 days after inoculation with bovine spongiform encephalopathy (BSE) prions with PrPScΔ91-106 in their brains. These results suggest that residues 91-106 are important for PrPC conversion into PrPSc in infection with RML, 22L, and FK-1 prions but not BSE prions. We then narrowed down the residues 91-106 by transducing various PrP deletional mutants into RML- and 22L-infected cells and identified that PrP mutants lacking residues 97-99 failed to convert into PrPSc in these cells. Our in vitro conversion assay also showed that RML, 22L, and FK-1 prions did not convert PrPΔ97-99 into PrPScΔ97-99, but BSE prions did. We further found that PrP mutants with proline residues at positions 97 to 99 or charged residues at positions 97 and 99 completely or almost completely lost their converting activity into PrPSc in RML- and 22L-infected cells. These results suggest that the structurally flexible and noncharged residues 97-99 could be important for PrPC conversion into PrPSc following infection with RML, 22L, and FK-1 prions but not BSE prions.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Príons , Animais , Camundongos , Doenças Priônicas/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Príons/patogenicidade , Prolina , Isoformas de Proteínas/genética , Translocação Genética
20.
J Biol Chem ; 298(8): 102181, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752366

RESUMO

The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular ß-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.


Assuntos
Doenças Priônicas , Príons , Scrapie , Amiloide/química , Animais , Biologia , Mamíferos/metabolismo , Camundongos , Doenças Priônicas/metabolismo , Proteínas Priônicas , Príons/metabolismo , Scrapie/metabolismo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA