Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain ; 147(1): 26-38, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37633259

RESUMO

Restless legs syndrome (RLS) is responsive to opioid, dopaminergic and iron-based treatments. Receptor blocker studies in RLS patients suggest that the therapeutic efficacy of opioids is specific to the opioid receptor and mediated indirectly through the dopaminergic system. An RLS autopsy study reveals decreases in endogenous opioids, ß-endorphin and perhaps Met-enkephalin in the thalamus of RLS patients. A total opioid receptor knock-out (mu, delta and kappa) and a mu-opioid receptor knock-out mouse model of RLS show circadian motor changes akin to RLS and, although both models show sensory changes, the mu-opioid receptor knock mouse shows circadian sensory changes closest to those seen in idiopathic RLS. Both models show changes in striatal dopamine, anaemia and low serum iron. However, only in the total receptor knock-out mouse do we see the decreases in serum ferritin that are normally found in RLS. There are also decreases in serum iron when wild-type mice are administered a mu-opioid receptor blocker. In addition, the mu-opioid receptor knock-out mouse also shows increases in striatal zinc paralleling similar changes in RLS. Adrenocorticotropic hormone and α-melanocyte stimulating hormone are derived from pro-opiomelanocortin as is ß-endorphin. However, they cause RLS-like symptoms and periodic limb movements when injected intraventricularly into rats. These results collectively suggest that an endogenous opioid deficiency is pathogenetic to RLS and that an altered melanocortin system may be causal to RLS as well.


Assuntos
Analgésicos Opioides , Síndrome das Pernas Inquietas , Humanos , Ratos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Síndrome das Pernas Inquietas/diagnóstico , Síndrome das Pernas Inquietas/tratamento farmacológico , Melanocortinas/uso terapêutico , beta-Endorfina/uso terapêutico , Ferro , Dopamina
2.
J Neuroinflammation ; 21(1): 250, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367382

RESUMO

BACKGROUND: IL-2 regulates T cell differentiation: low-dose IL-2 induces immunoregulatory Treg differentiation, while high-dose IL-2 acts as a potent activator of cytotoxic T cells and NK cells. Therefore, high-dose IL-2 has been studied for use in cancer immunotherapy. We aimed to utilize low-dose IL-2 to treat inflammatory diseases such as obesity and insulin resistance, which involve low-grade chronic inflammation. MAIN BODY: Systemic administration of low-dose IL-2 increased Treg cells and decreased inflammation in gonadal white adipose tissue (gWAT), leading to improved insulin sensitivity in high-fat diet-fed obese mice. Additionally, central administration of IL-2 significantly enhanced insulin sensitivity through the activation of the sympathetic nervous system. The sympathetic signaling induced by central IL-2 administration not only decreased interferon γ (IFNγ) + Th1 cells and the expression of pro-inflammatory cytokines, including Il-1ß, Il-6, and Il-8, but also increased CD4 + CD25 + FoxP3 + Treg cells and Tgfß expression in the gWAT of obese mice. These phenomena were accompanied by hypothalamic microgliosis and activation of pro-opiomelanocortin neurons. Furthermore, sympathetic denervation in gWAT reversed the enhanced insulin sensitivity and immune cell polarization induced by central IL-2 administration. CONCLUSION: Overall, we demonstrated that IL-2 improves insulin sensitivity through two mechanisms: direct action on CD4 + T cells and via the neuro-immune axis triggered by hypothalamic microgliosis.


Assuntos
Hipotálamo , Resistência à Insulina , Interleucina-2 , Camundongos Endogâmicos C57BL , Obesidade , Sistema Nervoso Simpático , Animais , Camundongos , Resistência à Insulina/fisiologia , Interleucina-2/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Linfócitos T Reguladores/efeitos dos fármacos
3.
Adv Exp Med Biol ; 1460: 463-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287862

RESUMO

Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.


Assuntos
Leptina , Obesidade , Transdução de Sinais , Humanos , Leptina/metabolismo , Obesidade/metabolismo , Animais , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Fator de Transcrição STAT3/metabolismo
4.
J Environ Sci (China) ; 141: 304-313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408830

RESUMO

Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.


Assuntos
Compostos Benzidrílicos , Fluorocarbonos , Exposição Materna , Humanos , Feminino , Camundongos , Animais , Masculino , Animais Recém-Nascidos , Compostos Benzidrílicos/toxicidade , Perfilação da Expressão Gênica , RNA
5.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925368

RESUMO

Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic-pituitary-adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells.


Assuntos
Orexinas/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Corticotrofos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Camundongos , Orexinas/fisiologia , Fosforilação , Hipófise/metabolismo , Pró-Opiomelanocortina/genética , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 490(2): 247-252, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28610922

RESUMO

Glucagon-like peptide-1 amide (GLP-1) and gastric inhibitory polypeptide (GIP) are incretin hormones regulating energy metabolism. GLP-1 and GIP combination is suggested as a promising therapeutic strategy for treatment of obesity and diabetes. However, the neuronal mechanisms are not yet investigated. In the present study, we investigated the role of central GLP-1 and GIP in regulation of body weight homeostasis. The effect of GLP-1 with GIP on food intake, body weight, locomotor activity were determined following intracerebroventricular (ICV) administration of GLP-1 and/or GIP in mice. ICV administration of low dose GLP-1 (0.3 nmol) and GIP (1 and 3 nmol) did not change food intake. However, ICV administration of higher doses GLP-1 (1 and 3 nmol) and GIP (6 nmol) significantly decreased food intake and body weight. To investigate the synergic effect of ICV GLP-1 and GIP, subeffective dose GLP-1 (0.3 nmol) and subeffective dose GIP (1 nmol) were chosen for further co-administration study. ICV co-administration of GLP-1 and GIP significantly decreased food intake, body weight and drinking. ICV co-administration of GLP-1 and GIP significantly increased neuronal activation and pro-opiomelanocortin (POMC) expression in hypothalamic arcuate nucleus. The neuronal activation and POMC expression were observed in two distinct neuronal populations. These results provide neuronal mechanisms supporting the development of GLP-1 and GIP combination therapeutics for treatment of obesity and diabetes.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/administração & dosagem , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Animais , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Adv Exp Med Biol ; 960: 381-397, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28585208

RESUMO

Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.


Assuntos
Dieta/efeitos adversos , Leptina/metabolismo , Obesidade/fisiopatologia , Animais , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais/fisiologia
8.
Front Neuroendocrinol ; 36: 130-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223866

RESUMO

Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Animais , Linhagem Celular , Hipotálamo/citologia , Neurônios/citologia , Neuropeptídeos/fisiologia
9.
Lupus ; 24(8): 854-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25634068

RESUMO

OBJECTIVE: Corticotropin-releasing hormone (CRH) and pro-opiomelanocortin (POMC) axis activation leads to the production of hormones, such as adrenocorticotrophic hormone (ACTH) and the α-melanocyte stimulating hormone (α-MSH). Data regarding the role of these hormones in systemic lupus erythematosus (SLE) are scarce. In the present study we aim to evaluate the participation of this axis in the cutaneous involvement of SLE. METHODS: Seventeen SLE patients were clinically evaluated, and biopsies from affected and unaffected skin of these patients were compared with 17 healthy control individuals. Immunohistochemical analyses for CRH, ACTH, α-MSH, and MC-1R were performed, and the serum levels of α-MSH, IL-1, IL-1ra, IL-6, IL-10, IL-12p70, IL-17, TNF-α, and IFN-γ were measured. RESULTS: The affected skin of the SLE patients exhibited higher CRH expression in the deep dermis compared to the skin of the controls (p = 0.024), whereas the tissue expression of ACTH, cortisol, α-MSH and its receptor MC-1R were comparable in SLE patients and controls. Higher serum levels of IFN-γ (p = 0.041), TNF-α (p = 0.001) and IL-6 (p = 0.049) were observed in SLE patients compared with controls, while α-MSH levels were similar in both groups. CONCLUSION: The novel finding of elevated CRH expression solely in the affected skin deep dermis supports the notion of a cutaneous local dysfunction of the CRH-POMC axis in the pathogenesis of cutaneous SLE lesions.


Assuntos
Hormônio Adrenocorticotrópico/análise , Hormônio Liberador da Corticotropina/análise , Lúpus Eritematoso Sistêmico/patologia , Pele/patologia , alfa-MSH/análise , Adulto , Autoanticorpos/sangue , Estudos de Casos e Controles , Citocinas/sangue , Feminino , Humanos , Hidrocortisona/sangue , Pessoa de Meia-Idade
10.
Mol Metab ; 89: 102036, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39304064

RESUMO

OBJECTIVE: Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues. METHODS: We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months. RESULTS: Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism. CONCLUSION: These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.


Assuntos
Animais Recém-Nascidos , Gluconeogênese , Hipotálamo , Animais , Camundongos , Hipotálamo/metabolismo , Proteína Relacionada com Agouti/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfatase/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Pró-Opiomelanocortina/metabolismo , Metabolismo Energético , Intestinos/crescimento & desenvolvimento , Intestinos/inervação , Intestinos/metabolismo , Tecido Adiposo/metabolismo , Leptina/metabolismo
11.
J Mol Cell Biol ; 14(9)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36581316

RESUMO

Thyroid hormone excess secondary to global type 3 deiodinase (DIO3) deficiency leads to increased locomotor activity and reduced adiposity, but also to concurrent alterations in parameters of the leptin-melanocortin system that would predict obesity. To distinguish the underlying contributions to the energy balance phenotype of DIO3 deficiency, we generated mice with thyroid hormone excess targeted to pro-opiomelanocortin (POMC)-expressing cells via cell-specific DIO3 inactivation. These mice exhibit a male-specific phenotype of reduced hypothalamic Pomc expression, hyperphagia, and increased activity in brown adipose tissue, with adiposity and serum levels of leptin and thyroid hormones remained normal. These male mice also manifest a marked and widespread hypothalamic reduction in the expression of bone morphogenetic receptor 1a (BMPR1A), which has been shown to cause similar phenotypes when inactivated in POMC-expressing cells. Our results indicate that developmental overexposure to thyroid hormone in POMC-expressing cells programs energy balance mechanisms in a sexually dimorphic manner by suppressing adult hypothalamic BMPR1A expression.


Assuntos
Tecido Adiposo Marrom , Pró-Opiomelanocortina , Hormônios Tireóideos , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Hormônios Tireóideos/metabolismo
12.
Mol Metab ; 20: 194-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503832

RESUMO

OBJECTIVE: Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation. METHODS: To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes. RESULTS: Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice. CONCLUSION: In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.


Assuntos
Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Epinefrina/metabolismo , Glucagon/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética
13.
Neurochem Int ; 102: 105-113, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916541

RESUMO

GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 µM and 320 µM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and ß-melanocyte stimulating hormone (α-MSH and ß-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca2+-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, ß-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Melanócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/metabolismo , beta-MSH/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Cricetulus , Hormônios Estimuladores de Melanócitos/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo
14.
Mol Metab ; 6(10): 1092-1102, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031711

RESUMO

OBJECTIVE: The increasing prevalence of type 2 diabetes (T2D) and associated morbidity and mortality emphasizes the need for a more complete understanding of the mechanisms mediating glucose homeostasis to accelerate the identification of new medications. Recent reports indicate that the obesity medication lorcaserin, a 5-hydroxytryptamine (5-HT, serotonin) 2C receptor (5-HT2CR) agonist, improves glycemic control in association with weight loss in obese patients with T2D. Here we evaluate whether lorcaserin has an effect on glycemia without body weight loss and how this effect is achieved. METHODS: Murine models of common and genetic T2D were utilized to probe the direct effect of lorcaserin on glycemic control. RESULTS: Lorcaserin dose-dependently improves glycemic control in mouse models of T2D in the absence of reductions in food intake or body weight. Examining the mechanism of this effect, we reveal a necessary and sufficient neurochemical mediator of lorcaserin's glucoregulatory effects, brain pro-opiomelanocortin (POMC) peptides. To clarify further lorcaserin's therapeutic brain circuit, we examined the receptor target of POMC peptides. We demonstrate that lorcaserin requires functional melanocortin4 receptors on cholinergic preganglionic neurons (MC4RChAT) to exert its effects on glucose homeostasis. In contrast, MC4RChAT signaling did not impact lorcaserin's effects on feeding, indicating a divergence in the neurocircuitry underpinning lorcaserin's therapeutic glycemic and anorectic effects. Hyperinsulinemic-euglycemic clamp studies reveal that lorcaserin reduces hepatic glucose production, increases glucose disposal and improves insulin sensitivity. CONCLUSIONS: These data suggest that lorcaserin's action within the brain represents a mechanistically novel treatment for T2D: findings of significance to a prevalent global disease.


Assuntos
Benzazepinas/farmacologia , Glicemia/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Animais , Benzazepinas/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Melanocortinas/farmacologia , Camundongos , Camundongos Transgênicos , Obesidade/tratamento farmacológico , Receptores de Melanocortina/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
15.
J Mol Neurosci ; 58(1): 66-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26572534

RESUMO

Olanzapine-induced weight gain is associated with atherosclerosis, hypertension, dyslipidemia, and diabetes. We synthesized a novel antipsychotic drug (PGW5) possessing an olanzapine moiety linked to sarcosine, a glycine transporter 1 inhibitor. In this study, we compared the metabolic effects of PGW5 and olanzapine in a female rat model of weight gain. Female rats were treated daily with oral olanzapine (4 mg/kg), PGW5 (25 mg/kg), or vehicle for 16 days. Behavioral tests were conducted on days 12-14. Biochemical analyses were performed at the end of the treatment. A significant increase in body weight was observed in the olanzapine-treated group, while the PGW5 group did not differ from the controls. The open field test showed hypo-locomotion in the olanzapine-treated animals as compared to PGW5 and control groups. A significant increase in hypothalamic protein expression of the neuropeptide Y5 receptor and a decrease in pro-opiomelanocortin messenger ribonucleic acid (mRNA) levels were detected following PGW5 treatment, but not after olanzapine administration. PGW5 appears to possess minor metabolic effects compared with the parent compound olanzapine. The differential modulation of brain peptides associated with appetite regulation is possibly involved in the attenuation of metabolic effects by PGW5.


Assuntos
Alanina/análogos & derivados , Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Aumento de Peso/efeitos dos fármacos , Alanina/química , Alanina/farmacologia , Animais , Antipsicóticos/química , Benzodiazepinas/química , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Olanzapina , Ratos , Ratos Wistar , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sarcosina/química
16.
Mol Metab ; 5(3): 245-252, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977396

RESUMO

OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

17.
Front Physiol ; 5: 480, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538630

RESUMO

Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

18.
J Neuroendocrinol ; 25(12): 1308-1317, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118324

RESUMO

Regulation of reproduction and energy homeostasis are linked, although our understanding of the central neural mechanisms subserving this connection is incomplete. Gonadotrophin-inhibiting hormone (GnIH) is a neuropeptide that negatively regulates reproduction and stimulates food intake. Neuropeptide Y (NPY) and products of the pro-opiomelanocortin (POMC) precursor (ß-endorphin melanocortins) are appetite regulating peptides produced in the neurones of the arcuate nucleus; these peptides also regulate reproduction. In the present study, we determined the effects of GnIH on NPY and POMC neurones. Using brain slices from mice with transgenes for fluorescent tags in the two types of neurone and patch clamp electrophysiology, a predominant inhibitory effect of GnIH was observed. GnIH (100 nM) inhibited the firing rate in POMC cells, confirming the results of previous studies and consistent with the stimulatory effect of GnIH on food intake. Paradoxically (i.e. because both GnIH and NPY stimulate food intake), GnIH also had a predominantly inhibitory effect on action potential activity in NPY cells. GnIH also inhibited the secretion of NPY and α-melanocyte-stimulating hormone secretion in incubated hypothalamic blocks. GnIH (100 ng) injected into the cerebral ventricles of mice did not increase the number of NPY cells that were positively immunostained for c-Fos. Finally, dual label immunocytochemistry showed that 20% of NPY neurones had close contacts from GnIH fibres/varicosities. In conclusion, we confirm a negative effect of GnIH on POMC cells and demonstrate a paradoxical reduction of electrophysiological and functional activity in NPY cells.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Gonadotropinas/antagonistas & inibidores , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA