Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Glob Chang Biol ; 30(1): e17059, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273539

RESUMO

Freshwater ecosystems are invaded by a non-random selection of taxa, among which crayfish stand out with successful examples worldwide. Species distribution models (SDMs) have been used to detect suitable areas for invasive species and predict their potential distributions. However, these prediction exercises assume the stability of realized environmental niches, which is uncertain during invasion. Worldwide evaluations involving cosmopolitan invaders may be particularly useful but have seldom been considered. Focusing on the successful invasion history of the red swamp crayfish, Procambarus clarkii, we assessed its geographic expansion and niche trends over time. Based on global occurrences from 1854 to 2022, multiple sequential SDMs have been implemented based on a set of bioclimatic variables. The environmental suitability for each period was projected through to the next period(s) using an ensemble procedure of commonly used SDM algorithms. As the records of the species are known, it was possible to check whether the modelling projections were concordant with the observed expansion of red swamp crayfish at a global scale. This also permitted analysis of its realized niche, and its dynamics, during different expansion phases. SDM maps based on past species records showed concordance with the known crayfish distributions and yielded similar spatial patterns with outputs overperforming random combinations of cells in term of suitability. The results also reflect the stability of the species niche, which despite some expansions during the invasion process, changed little in terms of main position in functional space over time. SDMs developed in the early stages of invasion provide useful insights but also tend to underpredict the potential range compared to models that were built for later stages. Our approach can be easily transferable to other well-documented taxa and represents valuable evidence for validating the use of SDMs, considering a highly dynamic world where biogeographical barriers are often bypassed.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Astacoidea , Água Doce
2.
Fish Shellfish Immunol ; 149: 109600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701991

RESUMO

Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.


Assuntos
Ração Animal , Antioxidantes , Astacoidea , Dieta , Microbioma Gastrointestinal , Glycine max , Hepatopâncreas , Animais , Astacoidea/imunologia , Astacoidea/genética , Ração Animal/análise , Glycine max/química , Antioxidantes/metabolismo , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Imunidade Inata/efeitos dos fármacos , Distribuição Aleatória , Intestinos/imunologia , Intestinos/efeitos dos fármacos , Suplementos Nutricionais/análise
3.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479567

RESUMO

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Assuntos
Timosina , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Astacoidea , Alimentos Marinhos , Antivirais
4.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168633

RESUMO

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Assuntos
Astacoidea , Regulação da Expressão Gênica , Humanos , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Interferência de RNA , Proteínas de Artrópodes/genética , Mamíferos , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Fish Shellfish Immunol ; 144: 109231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984613

RESUMO

This study aimed to evaluate the effects of varying zinc (Zn) levels on the growth performance, non-specific immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii (P. clarkii)). Adopting hydroxy methionine zinc (Zn-MHA) as the Zn source, 180 healthy crayfish with an initial body mass of 6.50 ± 0.05 g were randomly divided into the following five groups: X1 (control group) and groups X2, X3, X4, and X5, which were fed the basal feed supplemented with Zn-MHA with 0, 15, 30, 60, and 90 mg kg-1, respectively. The results indicated that following the addition of various concentrations of Zn-MHA to the diet, the following was observed: Specific growth rate (SGR), weight gain rate (WGR), total protein (TP), total cholesterol (TC), the activities of alkaline phosphatase (AKP), phenoloxidase (PO), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT), the expression of CTL, GPX, and CuZn-SOD genes demonstrated a trend of rising and then declining-with a maximum value in group X4-which was significantly higher than that in group X1 (P < 0.05). Zn deposition in the intestine and hepatopancreas, the activity of GSH-PX, and the expression of GSH-PX were increased, exhibiting the highest value in group X5. The malonaldehyde (MDA) content was significantly reduced, with the lowest value in group X4, and the MDA content of the Zn-MHA addition groups were significantly lower than the control group (P < 0.05). In the analysis of the intestinal microbiota of P. clarkii, the number of operational taxonomic units in group X4 was the highest, and the richness and diversity indexes of groups X3 and X4 were significantly higher than those in group X1 (P < 0.05). Meanwhile, the dietary addition of Zn-MHA decreased and increased the relative abundance of Proteobacteria and Tenericutes, respectively. These findings indicate that supplementation of dietary Zn-MHA at an optimum dose of 60 mg kg-1 may effectively improve growth performance, immune response, antioxidant capacity, and intestinal microbiota richness and species diversity in crayfish.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Animais , Antioxidantes/metabolismo , Metionina/metabolismo , Astacoidea/metabolismo , Zinco/farmacologia , Suplementos Nutricionais/análise , Dieta/veterinária , Racemetionina/farmacologia , Imunidade Inata , Superóxido Dismutase/farmacologia , Ração Animal/análise
6.
Fish Shellfish Immunol ; 151: 109735, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945414

RESUMO

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.

7.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278337

RESUMO

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Assuntos
Astacoidea , Salvia miltiorrhiza , Animais , Astacoidea/genética , Hemócitos , Hepatopâncreas , Função da Barreira Intestinal , Fagocitose , Polissacarídeos/farmacologia
8.
J Invertebr Pathol ; 205: 108128, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735430

RESUMO

The crayfish plague pathogen Aphanomyces astaci has been implicated in a number of mass mortalities and irreversible population declines of native crayfish across Europe. At present, the reservoirs of the pathogen in Europe are mainly populations of invasive North American crayfish species. In southwestern Europe, including France, a particularly widespread invader is the red swamp crayfish Procambarus clarkii. Recent distribution data confirm that P. clarkii is present in at least 75 French departments, i.e. more than 78% of those in metropolitan France. We analysed the prevalence and pathogen load of A. astaci in 42 populations of this species in western France (Nouvelle Aquitaine region), where the species is most densely distributed, particularly in a wide range of environments around the Gironde estuary. The pathogen was detected by two different quantitative PCR assays in more than three quarters of the populations studied (34 out of 42); 163 out of 480 analysed crayfish individuals tested positive for the presence of A. astaci. In most cases, individual infection levels were very low, detectable with quantitative PCR but not sufficient for pathogen genotyping. In seven P. clarkii individuals from four populations, however, we were able to assess A. astaci variation by microsatellite markers and sequencing of mitochondrial markers. All these host specimens carried A. astaci genotype group D, haplotype d1, which has caused the majority of crayfish plague outbreaks in neighbouring Spain. In contrast, the French outbreaks genotyped to date (including eight newly analysed in this study) were mostly caused by strains of genotype group B, specific to the signal crayfish Pacifastacus leniusculus. Haplotype d1 found in P. clarkii was involved in one of the newly characterised outbreaks. Our study confirms that P. clarkii is a potentially important reservoir of the crayfish plague pathogen in France, but not the main source of the pathogen in mass mortalities of A. pallipes, probably due to different ecological requirements of the different invasive host crayfish. However, as P. clarkii continues to spread, the threat posed by this species to native crayfish is likely to increase.


Assuntos
Aphanomyces , Astacoidea , Animais , Astacoidea/microbiologia , Aphanomyces/genética , Aphanomyces/fisiologia , França/epidemiologia , Prevalência , Espécies Introduzidas , Brancos
9.
Microb Ecol ; 86(4): 3111-3127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878052

RESUMO

Intestinal microbiota plays an important role in promoting digestion, metabolism, and immunity. Intestinal microbiota and fatty acids are important indicators to evaluate the health and nutritional composition of Procambarus clarkii. They have been shown to be strongly influence by environmental and genetic factors. However, it is not clear whether environmental factors have a greater impact on the intestinal microbiota and fatty acid composition of crayfish. The link between the intestinal microbial communities and fatty acid (FA) compositions of red swamp crayfish from different geographical has not yet been studied. Thus, the current paper focuses on the influence of different environments on the fatty acids in muscles of crayfish and the possible existence between gut microbiota and fatty acids. Therefore, in this study, we compared the fatty acid compositions and intestinal microbiota of five crayfish populations from different geographical locations. The results were further analyzed to determine whether there is a relationship between geographical location, fatty acid compositions and intestinal microbiota. The gut microbial communities of the crayfish populations were characterized using 16S rRNA high-throughput gene sequencing. The results showed that there were significant differences in FA compositions of crayfish populations from different geographical locations. A similar trend was observed in the gut microbiome, which also varied significantly according to geographic location. Interestingly, the analysis revealed that there was a relationship between fatty acid compositions and intestinal microbes, revealed by alpha diversity analysis and cluster analysis. However, further studies of the interactions between the P. clarkii gut microbiota and biochemical composition are needed, which will ultimately reveal the complexity of microbial ecosystems with potential applications in aquaculture and species conservation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Astacoidea/genética , RNA Ribossômico 16S/genética , Ácidos Graxos
10.
Fish Shellfish Immunol ; 137: 108780, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120086

RESUMO

Scavenger receptor (SRs) are pattern recognition receptors that play important roles in innate immunity. However, studies on SR in Procambarus clarkii are still lacking. In the present study, a novel scavenger receptor B on P. clarkii (PcSRB) was identified. The ORF of PcSRB was 548 bp and encoded 505 amino acid residues. It was a transmembrane protein with two transmembrane domains. The molecular weight was about 57.1 kDa. The tissue analysis by real-time PCR showed that the highest expression level was found in hepatopancreas, while the lowest expression level was found in heart, muscle, nerve and gill. After P. clarkii were infected with Aeromonas hydrophila, the expression of SRB in hemocytes increased rapidly at 12 h, and SRB in hepatopancreas and intestine also increased rapidly at 48 h after infection. The recombinant protein was obtained by prokaryotic expression. The recombinant protein (rPcSRB) could bind to bacteria and different molecular pattern recognition substances. The present study confirmed that SRB may be involved in the immune regulation process and play a certain role in the immune defense of P. clarkii, especially in the recognition and binding of pathogens. Therefore, this study provides theoretical support for further improving and enriching the immune system of P. clarkii.


Assuntos
Astacoidea , Imunidade Inata , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão , Proteínas Recombinantes , Proteínas de Artrópodes
11.
Fish Shellfish Immunol ; 137: 108750, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084855

RESUMO

An ecdysteroid-regulated 16-kDa protein homolog (named Pc-E16), encoding 150 amino acid residues with a conserved MD-2-related lipid-recognition domain, was first identified in Procambarus clarkii. Phylogenetic analyses indicated similarity between Pc-E16 and 16-kDa proteins from Aplysia californica and insects. Recombinant Pc-E16 protein was successfully expressed in BL21 (DE3) Escherichia coli cells, and polyclonal antibodies against purified Pc-E16 proteins were prepared. In comparison with other tissues, Pc-E16 was highly expressed in the intestine; real-time PCR and Western blotting results indicated that Pc-E16 expression was significantly induced by lipopolysaccharides in hepatopancreas and hemocytes. Pc-E16-mediated signaling pathways were investigated by digital gene expression analysis following RNA interference targeting Pc-E16. A total of 6103 differentially expressed genes (DEGs) were identified, of which 3318 were up- and 2785 were downregulated. Many DEGs were involved in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that DEGs were clustered into 225 pathways, and 15 significantly enriched pathways were identified at the immune system level. In addition, the expression level of Pc-E16 in hemocytes and hepatopancreas was obviously downregulated at 48 h after dsRNA injection, and Pc-E16-RNAi treatment affected the expression levels of immune-related genes. Altogether, our results suggest that Pc-E16 is involved in the innate immune response of P. clarkii.


Assuntos
Astacoidea , Ecdisteroides , Animais , Ecdisteroides/metabolismo , Filogenia , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas Recombinantes/genética , Hepatopâncreas/metabolismo , Proteínas de Artrópodes
12.
Fish Shellfish Immunol ; 141: 109028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633345

RESUMO

Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and ß-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.


Assuntos
Astacoidea , Receptores de Reconhecimento de Padrão , Animais , Receptores de Reconhecimento de Padrão/genética , Imunidade Inata , Receptores Toll-Like/metabolismo , Bactérias/metabolismo
13.
Fish Shellfish Immunol ; 141: 109040, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648118

RESUMO

Galectins, a family of lectins that bind to ß-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.

14.
Fish Shellfish Immunol ; 140: 108944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451527

RESUMO

Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.


Assuntos
Astacoidea , Imunidade Inata , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Fosfolipases A2 , Fosfolipases A2 Citosólicas , Proteínas de Artrópodes , Mamíferos
15.
Fish Shellfish Immunol ; 132: 108468, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36464079

RESUMO

Trained immunity has been widely observed in mammals. Its identification in red swamp crayfish (Procambarus clarkii) is important for disease resistance in the crayfish farming industry. In this study, the mortality, expression of immune genes, production of reactive oxygen species (ROS), and phagocytosis ability of haemocytes in crayfish infected by pathogens (Vibrio parahaemolyticus or white spot syndrome virus) and crayfish trained with ß-glucan or PBS (the control) were assessed when they were re-challenged by the pathogens. The results showed that the mortality of the trained and re-challenged crayfish were significantly lower than those of the untrained and challenged crayfish. Furthermore, the expression of immune genes, including Resistance (R), ALF, crustin2, and proPO, ROS levels, and phagocytosis ability of haemocytes, was significantly improved in the trained crayfish compared to that in the untrained crayfish. Interestingly, we found that the immune memory of trained crayfish lasted for at least 18 days. Together, these results indicate that crayfish develops trained immunity that can play an important role in the disease resistance. This suggests that trained immunity may be applied to improve disease resistance and crayfish production.


Assuntos
Resistência à Doença , Vírus da Síndrome da Mancha Branca 1 , Animais , Astacoidea , Imunidade Treinada , Espécies Reativas de Oxigênio , Fagocitose , Imunidade Inata/genética , Mamíferos
16.
Fish Shellfish Immunol ; 137: 108781, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127188

RESUMO

Peroxiredoxin (Prx), which is a newly discovered member of the antioxidant protein family, performs important biological functions in intracellular signal transduction. In the present study, a peroxiredoxin 4 gene was cloned from crayfish for the first time and named Pc-prx 4. According to the amino acid sequence signature, Pc-Prx 4 was identified as the typical 2-Cys Prx molecule, which possessed two conserved cysteines (Cys98 and Cys219). Time-course expression patterns post V. harveyi infection revealed that Pc-prx 4 was likely related to crayfish innate immune defense responses. In particular, the highest fold upregulation of the Pc-prx 4 mRNA transcript reached approximately 170 post V. harveyi infection in the crayfish hepatopancreas. The results of the mixed functional oxidase assay showed that rPc-Prx 4△ could resist the damaging effect of reactive oxygen species generated from the thiol/Fe3+/O2- reaction system to some extent. In addition, the results of the RNAi assay revealed that the crayfish survival rate was obviously increased post injection of V. harveyi when Pc-prx 4 was knocked down. Further study revealed that both hemolymph melanization and PO activity were strengthened to different degrees in the RNAi assay. Therefore, we speculated that the increase in the crayfish survival rate was likely due to the increase in hemolymph melanization. The obviously reinforced hemolymph melanization was directly caused by the upregulation of hemolymph PO activity, which was induced by the knockdown of Pc-prx 4. However, further studies are still indispensable for illuminating the molecular mechanism of Pc-prx 4 in the crayfish innate immune defense system.


Assuntos
Proteínas de Artrópodes , Astacoidea , Animais , Astacoidea/genética , Sequência de Aminoácidos , Imunidade Inata/genética , Peroxirredoxinas/genética , Clonagem Molecular
17.
Fish Shellfish Immunol ; 142: 109137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827246

RESUMO

Abamectin, a pesticide of 16-member macrocyclic lactones, is widely applied in agriculture. As an important environmental factor, pesticides pose a great threat to defense system in aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the defense mechanism of P. clarkii to abamectin. In this study, P. clarkii were exposed to 0, 0.2, 0.4, 0.6 mg/L abamectin, immune- and antioxidant-related enzymes activities, genes expression levels, and histological observations were used to analyze the defense capacity of P. clarkii to abamectin. With increasing abamectin concentration, reactive oxygen species (ROS) level and malondiadehyde (MDA) content increased significantly. Meanwhiile, acid phosphate (ACP), alkaline phosphatase (AKP) activities, total haemocyte counts (THC), and Crustin expression level decreased significantly, superoxide dismutase (SOD), catalase (CAT) activities, total antioxidant capacity (T-AOC), and GPX expression level also decreased significantly. Hematoxylin & eosin (H&E) observation showed that with increasing abamectin concentration, hepatopancreas were damaged, especially membrane structure. Through TUNEL observation and apoptosis-related genes (PcCTSL, Bcl-2, Bax, BI-1, PcCytc, caspase-3) expression levels, with increasing abamectin concentration, apoptosis rate increased significantly. Results of this study indicated that abamectin caused oxidative damage to P. clarkii, resulting in damage to defense system, suppression of nonspecific immunity and antioxidation, and promotion of apoptosis. It provided theoretical basis for healthy P. clarkii culture, and for further study on defense mechanism of aquatic animals to pesticides.


Assuntos
Antioxidantes , Praguicidas , Animais , Antioxidantes/metabolismo , Astacoidea , Praguicidas/metabolismo , Praguicidas/farmacologia , Apoptose
18.
Fish Shellfish Immunol ; 132: 108471, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509413

RESUMO

This study aimed to evaluate antioxidant capacity and protection from white spot syndrome virus (WSSV) challenge of Procambarus clarkii fed trans-vp19 and trans-vp (19 + 28) genes of Synechococcus sp. PCC7942 (Syn7942). P. clarkii were fed transgenic cyanobacteria continuously for 7 days, and then infected with WSSV after 12 h starvation. The daily mortality in each group was measured for 10 days and hepatopancreas and muscle of P. clarkii were examined for enzymes phenoloxidase (PO) activity, catalase (CAT) activity, glutathione peroxidase (GSH-px) activity, and malondialdehyde (MDA) concentration after immunization and viral challenge at different times. Compared with the WSSV-infected crayfish in positive control group (challenge and no vaccination) and wild type group (challenge, feeding wild-type Syn7942), vp19 group (challenge, feeding Syn7942 trans-vp19 gene) and vp (19 + 28) group [challenge, feeding Syn7942 trans-vp (19 + 28) genes] significantly improved the survival rate from 0% to 60% and 56.7%, respectively. Consistently, significantly greater PO, CAT, and GSH-px activity and significantly lower MDA concentration in the vp19 and vp (19 + 28) groups compared to the control group. These results demonstrate that the trans-vp19 and trans-vp (19 + 28) gene of Syn7942 significantly facilitated the immune and antioxidant capacity of crayfish. Therefore, the trans-vp19 and trans-vp (19 + 28) genes of Syn7942 could provide protection for crayfish as an anti-WSSV oral medication.


Assuntos
Synechococcus , Vírus da Síndrome da Mancha Branca 1 , Animais , Antioxidantes , Astacoidea , Vírus da Síndrome da Mancha Branca 1/fisiologia , Synechococcus/genética , Administração Oral
19.
Artigo em Inglês | MEDLINE | ID: mdl-37182788

RESUMO

Desiccation is a stressful situation that decapods often experience during live transportation. This study investigated the effects of low-temperature aerial exposures (LTAEs) (dry exposure (DL) and moist exposure (ML) at 6 °C) and re-immersion on the antioxidative and immune responses and hepatopancreatic histopathology in P. clarkii. Compared to the control group (normally feeding at 24.0 °C water temperature), the crayfish under LTAEs showed overall severe hepatopancreatic oxidative damage, with significantly increased malondialdehyde (MDA) contents and significantly reduced total antioxidant capacity (T-AOC), and oxidant damage was not fully recovered even after 12 h of re-immersion; the expression of hsp70 was significantly increased within 24-48 h of stress and re-immersion. The activity of hemolymphatic acid phosphatase (ACP) was significantly increased during 24-48 h of the stress and at 12 h of re-immersion; the activity of aspartic aminotransferase (AST) and alanine aminotransferase (ALT) was significantly increased throughout the experiment; and the gene expression of proPO or TLR was significantly increased during 12-48 h of the stress. Severe histopathological changes (lumen dilatation, vacuolation of epithelial cells and reduced cell numbers) were observed in hepatopancreas at 48 h of stress and 12 h of re-immersion. These results indicated that 48 h of low-temperature aerial exposure stress stimulated the non-specific immunity but adversely affected the antioxidation and hepatopancreatic histomorphology of P. clarkii, whereas 12 h of re-immersion was not sufficient to restore crayfish from stress to a normal state.


Assuntos
Antioxidantes , Astacoidea , Animais , Antioxidantes/metabolismo , Astacoidea/fisiologia , Temperatura , Estresse Oxidativo , Temperatura Baixa , Imunidade Inata
20.
Ecotoxicol Environ Saf ; 249: 114432, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321696

RESUMO

Microplastic pollution has attracted a lot of attention in recent years. Not only can it be ingested by animals, but it can easily become a carrier of other pollutants, forming a composite pollutant with potentially toxic effects on organisms. We investigated the effect of Cu on the accumulation of polystyrene microplastics (PS) in the gills of Procambarus clarkii and whether PS exacerbated the immune toxicity of Cu to P. clarkii were exposed to Cu, PS and PS+Cu for 48 h, the accumulation of PS in gill and hepatopancreas immune and antioxidant indices were analyzed. The objective was to investigate the toxic effects of Ps and Cu compound pollutants on P. clarkii and whether the accumulated pollutants would cause food safety problems. The results showed that microplastic particles adhered to each other and aggregated in the PS+Cu group, and the number of microplastic particles in gill in the PS+Cu group was significantly lower than that in the PS group. Compared with the other two treatment groups, SOD, CAT, GPx activities and MDA content increased significantly in the PS+Cu group and were relatively delayed. At 12 h, 24 h, 36 h and 48 h, the SOD mRNA expression levels in the PS+Cu group were all significantly lower than those in the Cu group (P < 0.05). At 24 h and 48 h, CAT mRNA expression in the PS+Cu group was significantly higher than that in the Cu group (P < 0.05). Crustin 4 mRNA expressions in the PS+Cu group was significantly higher than that in the Cu group at 12 h and 36 h (P < 0.05). The results demonstrate that the PS and Cu compound reduced the accumulation of microplastic particles in the gill. PS particles delayed Cu entry into P. clarkii for a short time (12 h) and reduced the toxic effect, but with the increase of exposure time (24 h and 48 h), the toxic effect of PS and Cu complexes on P. clarkii increases, and the large accumulation of PS and Cu complexes may cause food safety problems.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Plásticos/metabolismo , Microplásticos/metabolismo , Astacoidea , Poliestirenos/metabolismo , Poluentes Químicos da Água/toxicidade , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA