Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 199(1): 39-45, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522226

RESUMO

The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) is a structurally and functionally complex system that mediates sugar uptake in bacteria. Besides several soluble subunits, the glucose-specific PTS includes the integral membrane protein IICB that couples the transmembrane transport of glucose to its phosphorylation. Here, we used electron crystallography of sugar-embedded tubular crystals of the glucose-specific IIC transport domain from Escherichia coli (ecIICglc) to visualize the structure of the transporter in the presence and absence of its substrate. Using an in vivo transport assay and binding competition experiments, we first established that, while it transports d-glucose, ecIICglc does not bind l-glucose. We then determined the projection structure of ecIICglc from tubular crystals embedded in d- and l-glucose and found a subtle conformational change. From comparison of the ecIICglc projection maps with crystal structures of other IIC transporters, we can deduce that the transporter adopts an inward-facing conformation, and that the maps in the presence and absence of the substrate reflect the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas de Membrana Transportadoras/química , Cristalografia , Elétrons , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
2.
J Struct Biol ; 188(1): 87-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25160726

RESUMO

Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.


Assuntos
Ácido Ascórbico/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Transportadores de Sódio Acoplados à Vitamina C/química , Sequência de Aminoácidos , Ácido Ascórbico/biossíntese , Ácido Ascórbico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Humanos , Ligantes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/ultraestrutura , Microscopia Eletrônica de Transmissão , Ligação Proteica , Transportadores de Sódio Acoplados à Vitamina C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA