Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 17(1): 289, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441937

RESUMO

BACKGROUND: We observed red autofluorescence emanating from bronchial cancer lesions using a sensitive color-fluorescence endoscopy system. We investigated to clarify the origin of the red autofluorescence. METHODS: The wavelengths of the red autofluorescence emanating from lesions were measured in eight patients using a spectrum analyzer and compared based on pathologic findings. Red autofluorescence at 617.3, 617.4, 619.0, and 617.1 nm was emitted by normal bronchus, inflamed tissue, tissue exhibiting mild dysplasia, and malignant lesions, respectively. Protoporphyrin, uroporphyrin, and coproporphyrin, the major porphyrin derivatives in human blood, were purchased to determine which porphyrin derivative is the source of red fluorescence when acquired de novo. We synthesized photoporphyrin, Zn-protoporphyrin and Zn-photoprotoporphyrin from protoporphyrin. RESULTS: Coproporphyrin and uroporphyrin emitted only weak fluorescence. Fluorescence was emitted by our synthesized Zn-photoprotoporphyrin at 625.5 nm and by photoprotoporphyrin at 664.0 nm. CONCLUSIONS: From these results, we conclude that Zn-photoprotoporphyrin was the source of the red autofluorescence observed in bronchial lesions. Zn-protoporphyrin is converted to Zn-photoprotoporphyrin by radiation with excitation light. Our results suggest that red autofluorescence emanating from Zn-photoprotoporphyrin in human tissues could interfere with photodynamic diagnosis using porphyrin derivatives such as Photofrin® and Lazerphyrin® with a sensitive endoscopy system, because color cameras cannot differentiate Zn-photoprotoporphyrin red fluorescence from that of other porphyrin derivatives.


Assuntos
Neoplasias Brônquicas/diagnóstico por imagem , Fármacos Fotossensibilizantes/metabolismo , Protoporfirinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias Brônquicas/metabolismo , Endoscopia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagem Óptica/instrumentação , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Zinco
2.
Talanta ; 280: 126765, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216421

RESUMO

The nanozyme, acting as the signal labeling reporter, is widely employed in colorimetric immunoassays due to its exceptional catalytic activity and reliable performance. Nonetheless, when immobilized on the nanozyme's surface, there is a decline in catalytic activity, which hinders its ability to meet the escalating demand for advanced colorimetric immunoassays. Herein, we introduce a novel MILL-88@TcP nanozyme, formed by encapsulating iron porphyrins (TcP) within metal-organic frameworks (MILL-88), where the catalytic activity of TcP is fully preserved through ethanol-induced release. Leveraging the superior encapsulation capacity and enzyme-mimicking characteristics of MILL-88, the MILL-88@TcP nanozyme demonstrates a remarkable colorimetric performance, 1430-fold higher than that of MILL-88 alone. Furthermore, we developed the MILL-88@TcP nanozyme-based Enzyme-Linked Immunosorbent Assay (N-ELISA) for enhanced sensitivity in detecting Salmonella typhimurium, achieving a detection limit of 1.68 × 102 CFU/mL, approximately 500-fold enhancement compared to the traditional HRP-based ELISA (8.35 × 104 CFU/mL). Notably, the average recoveries ranged from 91.50 % to 108.50 % with a variation of 3.53 %-10.41 %, indicating high accuracy and precision. Collectively, this study highlights that the MILL-88@TcP nanozyme, with its superior catalytic performance and anti-interference capabilities, holds promise as a colorimetric labeling reporter to enhance the detection efficacy of colorimetric immunoassays and has the potential to establish a more stable and sensitive colorimetric assay platform.


Assuntos
Colorimetria , Ferro , Estruturas Metalorgânicas , Leite , Salmonella typhimurium , Estruturas Metalorgânicas/química , Leite/química , Leite/microbiologia , Salmonella typhimurium/isolamento & purificação , Animais , Catálise , Ferro/química , Colorimetria/métodos , Porfirinas/química , Limite de Detecção , Ensaio de Imunoadsorção Enzimática/métodos
3.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 6): 824-8, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27308051

RESUMO

Two porphyrin complexes were studied to determine the effects of protonation on ring deformation within the porphyrin. The porphyrin 7,8,17,18-tetra-bromo-5,10,15,20-tetra-phenyl-porphyrin, C44H26Br4N4, was selected because the neutral species is readily doubly protonated to yield a dication, which was crystallized here with perchlorate counter-ions as a di-chloro-methane tris-olvate, C44H28Br4N4 (2+)·2ClO4 (-)·3CH2Cl2. The centrosymmetric neutral species is observed to have a mild 'ruffling' of the pyrrole rings and is essentially planar throughout; intra-molecular N-H⋯N hydrogen bonds occur. In contrast, the dication exhibits considerable deformation, with the pyrrole rings oriented well out of the plane of the porphyrin, resulting in a 'saddle' conformation of the ring. The charged species forms N-H⋯O hydrogen bonds to the perchlorate anions, which lie above and below the plane of the porphyrin ring. Distortions to the planarity of the pyrrole rings in both cases are very minor. The characterization of the neutral species represents a low-temperature redetermination of the previous room-temperature analyses [Zou et al. (1995 ▸). Acta Cryst. C51, 760-761; Rayati et al. (2008 ▸). Polyhedron, pp. 2285-2290], which showed disorder and physically unrealistic displacement parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA