Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607951

RESUMO

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Assuntos
Eicosanoides/metabolismo , Epóxido Hidrolases/biossíntese , Macrófagos/imunologia , Metástase Neoplásica/patologia , Receptores de Prostaglandina E Subtipo EP4/biossíntese , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fagocitose/imunologia , Células RAW 264.7
2.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502044

RESUMO

Implantation consists of a complex process based on coordinated crosstalk between the endometrium and trophoblast. Furthermore, it is known that the microenvironment of this fetal-maternal interface plays an important role in the development of extravillous trophoblast cells. This is mainly due to the fact that tissues mediate embryonic signaling biologicals, among other molecules, prostaglandins. Prostaglandins influence tissue through several cell processes including differentiation, proliferation, and promotion of maternal immune tolerance. The aim of this study is to investigate the potential pathological mechanism of the prostaglandin E2 receptor 4 (EP4) in modulating extravillous trophoblast cells (EVTs) in unexplained recurrent marriage (uRM). Our results indicated that the expression of EP4 in EVTs was decreased in women experiencing uRM. Furthermore, silencing of EP4 showed an inhibition of the proliferation and induced apoptosis in vitro. In addition, our results demonstrated reductions in ß- human chorionic gonadotropin (hCG), progesterone, and interleukin (IL)-6, which is likely a result from the activation of the cyclic adenosine monophosphate (cAMP)- cAMP-dependent protein kinase A (PKA)-phosphorylating CREB (pCREB) pathway. Our data might provide insight into the mechanisms of EP4 linked to trophoblast function. These findings help build a more comprehensive understanding of the effects of EP4 on the trophoblast at the fetal-maternal interface in the first trimester of pregnancy.


Assuntos
Aborto Habitual/metabolismo , AMP Cíclico/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Trofoblastos/metabolismo , Aborto Habitual/patologia , Adulto , Apoptose , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Gonadotropinas/metabolismo , Humanos , Interleucina-6/metabolismo , Pessoa de Meia-Idade , Gravidez , Progesterona/metabolismo
3.
Bioorg Med Chem Lett ; 30(10): 127104, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201020

RESUMO

Novel prostaglandin E2 receptor 4 (EP4) agonists featuring a pyridone core and an allylic alcohol ω-chain were discovered. These agonists were shown to be selective over EP1, EP2 and EP3. Analogs harboring a 4-carboxylic acid phenethyl α-chain displayed improved potency over those containing an n-heptanoic acid chain. Key SAR relationships were also identified.


Assuntos
Propanóis/química , Piridonas/química , Receptores de Prostaglandina E Subtipo EP4/agonistas , Humanos , Propanóis/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Piridonas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Relação Estrutura-Atividade
4.
J Cell Mol Med ; 23(9): 6355-6367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31297954

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as potent regulators of cardiac disease; however, the role of lncRNA in cardiac fibrosis remains partially understood. In this study, we identified a cardiac endothelial-enriched lncRNA-lnc000908, which was markedly up-regulated in rats with cardiac fibrosis. In addition, the expression of prostaglandin E2 receptor 4 (EP4) was decreased in cardiac fibrosis. In vivo lnc000908 silencing by lentivirus increased the EP4 level, decreased endothelial-mesenchymal transition (EndMT) and improved cardiac fibrosis and cardiac function. Consistently, the lnc000908 knockdown also up-regulated EP4 and suppressed transforming growth factor-beta (TGF-ß)-induced EndMT in cardiac microvascular endothelial cells. In contrast, the lnc000908 overexpression by lentivirus decreased the EP4 level and induced EndMT. Of note, these pro- or anti-EndMT effects were reversed by the EP4 overexpression or the EP4 antagonist AH-23848, respectively. This study demonstrates that lnc000908 is a novel regulator of cardiac fibrosis by modulating the EP4 expression and EndMT.


Assuntos
Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , RNA Longo não Codificante/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Remodelação Ventricular/fisiologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Fibrose/metabolismo , Fibrose/patologia , Coração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo
5.
Bioorg Med Chem Lett ; 28(10): 1892-1896, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636218
6.
J Proteome Res ; 14(3): 1566-73, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25669961

RESUMO

Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4.


Assuntos
Fígado/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Tiofenos/farmacologia , Triazóis/farmacologia , Animais , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Prótons por Ressonância Magnética
7.
Front Pharmacol ; 13: 1004619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438844

RESUMO

Inflammatory responses in the peritoneum contribute to peritoneal dialysis (PD)-associated peritoneal fibrosis. Results of our previous study showed that increased microsomal prostaglandin E synthase-1-mediated production of prostaglandin E2 (PGE2) contributed to peritoneal fibrosis. However, the role of its downstream receptor in the progression of peritoneal fibrosis has not been established. Here, we examined the role of PGE2 receptor 4 (EP4) in the development of peritoneal fibrosis. EP4 was significantly upregulated in peritoneal tissues of PD patients with ultrafiltration failure, along with the presence of an enhanced inflammatory response. In vitro experiments showed that exposure to high glucose concentrations enhanced EP4 expression in rat peritoneal mesothelial cells (RPMCs). High-glucose-induced expression of inflammatory cytokines (monocyte chemoattractant protein-1, tumour necrosis factor α, and interleukin 1ß) was significantly reduced in RPMCs treated with ONO-AE3-208, an EP4 receptor antagonist. ONO-AE3-208 also significantly decreased the expression of extracellular matrix proteins induced by high glucose concentrations. Furthermore, ONO-AE3-208 blunted activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and phosphorylation of nuclear factor kappa B (NF-κB) (p-p65). To further investigate the functional role of EP4, ONO-AE3-208 was administrated for 4 weeks in a rat model of PD, the results of which showed that ONO-AE3-208 inhibited peritoneal fibrosis and improved peritoneal dysfunction. Additionally, inflammatory cytokines in the peritoneum of PD rats treated with ONO-AE3-208 were downregulated, in line with inhibition of the NLRP3 inflammasome and NF-κB phosphorylation. In conclusion, an EP4 antagonist reduced the development of peritoneal fibrosis, possibly by suppressing NLRP3 inflammasome- and p-p65-mediated inflammatory responses. Our findings suggest that an EP4 antagonist may be therapeutically beneficial for PD-associated peritoneal fibrosis.

8.
J Neuroimmunol ; 362: 577783, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902709

RESUMO

Brain-derived neurotrophic factor (BDNF) cannot cross the blood-brain barrier (BBB) when administered peripherally, which hinders its therapeutic potential. We utilized an in vitro BBB model-a tri-culture of a human endothelial cell line, a pericyte cell line, and an astrocyte cell line-to study the effect of twenty candidate lipophilic compounds on stimulating BDNF secretion in pericytes and astrocytes. The prostaglandin E2 receptor 4 agonist and sphingosine-1-phosphate receptor 5 agonist facilitated secretion of BDNF in the astrocyte, but did not decrease the transendothelial electrical resistance. These compounds may be promising agents for neurodegenerative and neuroinflammatory diseases.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Técnicas de Cocultura/métodos , Células Cultivadas , Humanos , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Esfingosina-1-Fosfato/agonistas
9.
EMBO Mol Med ; 13(1): e12798, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283987

RESUMO

Immune checkpoint blockade (ICB) has a limited effect on colorectal cancer, underlining the requirement of co-targeting the complementary mechanisms. Here, we identified prostaglandin E2 (PGE2 ) receptor 4 (EP4) as the master regulator of immunosuppressive myeloid cells (IMCs), which are the major driver of resistance to ICB therapy. PGE2 -bound EP4 promotes the differentiation of immunosuppressive M2 macrophages and myeloid-derived suppressor cells (MDSCs) and reduces the expansion of immunostimulated M1 macrophages. To explore the immunotherapeutic role of EP4 signaling, we developed a novel and selective EP4 antagonist TP-16. TP-16 effectively blocked the function of IMCs and enhanced cytotoxic T-cell-mediated tumor elimination in vivo. Cell co-culture experiments revealed that TP-16 promoted T-cell proliferation, which was impaired by tumor-derived CD11b+ myeloid cells. Notably, TP-16 and anti-PD-1 combination therapy significantly impeded tumor progression and prolonged mice survival. We further demonstrated that TP-16 increased responsiveness to anti-PD-1 therapy in an IMC-related spontaneous colorectal cancer mouse model. In summary, this study demonstrates that inhibition of EP4-expressing IMCs may offer a potential strategy for enhancing the efficacy of immunotherapy for colorectal cancer.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , Animais , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia , Camundongos , Células Mieloides , Receptores de Prostaglandina E Subtipo EP4
10.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707933

RESUMO

In aggressively growing tumors, hypoxia induces HIF-1α expression promoting angiogenesis. Previously, we have shown that overexpression of oncogenic microRNAs (miRNAs, miRs) miR526b/miR655 in poorly metastatic breast cancer cell lines promotes aggressive cancer phenotypes in vitro and in vivo. Additionally, miR526b/miR655 expression is significantly higher in human breast tumors, and high miR526b/miR655 expression is associated with poor prognosis. However, the roles of miR526b/miR655 in hypoxia are unknown. To test the relationship between miR526b/miR655 and hypoxia, we used various in vitro, in silico, and in situ assays. In normoxia, miRNA-high aggressive breast cancer cell lines show higher HIF-1α expression than miRNA-low poorly metastatic breast cancer cell lines. To test direct involvement of miR526b/miR655 in hypoxia, we analyzed miRNA-high cell lines (MCF7-miR526b, MCF7-miR655, MCF7-COX2, and SKBR3-miR526b) compared to controls (MCF7 and SKBR3). CoCl2-induced hypoxia in breast cancer further promotes HIF-1α mRNA and protein expression while reducing VHL expression (a negative HIF-1α regulator), especially in miRNA-high cell lines. Hypoxia enhances oxidative stress, epithelial to mesenchymal transition, cell migration, and vascular mimicry more prominently in MCF7-miR526b/MCF7-miR655 cell lines compared to MCF7 cells. Hypoxia promotes inflammatory and angiogenesis marker (COX-2, EP4, NFκB1, VEGFA) expression in all miRNA-high cells. Hypoxia upregulates miR526b/miR655 expression in MCF7 cells, thus observed enhancement of hypoxia-induced functions in MCF7 could be attributed to miR526b/miR655 upregulation. In silico bioinformatics analysis shows miR526b/miR655 regulate PTEN (a negative regulator of HIF-1α) and NFκB1 (positive regulator of COX-2 and EP4) expression by downregulation of transcription factors NR2C2, SALL4, and ZNF207. Hypoxia-enhanced functions in miRNA-high cells are inhibited by COX-2 inhibitor (Celecoxib), EP4 antagonist (ONO-AE3-208), and irreversible PI3K/Akt inhibitor (Wortmannin). This establishes that hypoxia enhances miRNA functions following the COX-2/EP4/PI3K/Akt pathways and this pathway can serve as a therapeutic target to abrogate hypoxia and miRNA induced functions in breast cancer. In situ, HIF-1α expression is significantly higher in human breast tumors (n = 96) compared to non-cancerous control tissues (n = 20) and is positively correlated with miR526b/miR655 expression. In stratified tumor samples, HIF-1α expression was significantly higher in ER-positive, PR-positive, and HER2-negative breast tumors. Data extracted from the TCGA database also show a strong correlation between HIF-1α and miRNA-cluster expression in breast tumors. This study, for the first time, establishes the dynamic roles of miR526b/miR655 in hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA