Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 56(9): 941-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27198125

RESUMO

Beauveria bassiana is one of the most known entomopathogenic fungal species and its entomopathogenic mechanism involves several bioactive metabolites, mainly cuticle-degrading enzymes and toxic molecules, which are predicted to play a key role as virulence factors. In this study six Beauveria bassiana strains (B 13/I03, B 13/I11, B 13/I49, B 13/I57, B 13/I63, and B 13/I64) were assayed against Tenebrio molitor larvae. Enzymatic activity of total proteases and specifically Pr 1 and Pr 2, as well as the production of toxic compounds were investigated in each fungal strain. Toxins were detected both in vitro-in medium filtrates and mycelia-and in vivo-in Tenebrio molitor larvae infected by the fungal strains tested. B 13/I11 and B 13/I63 strains showed the most significant entomopathogenic activity against Tenebrio molitor larvae (cumulative mortality rate 100 and 97%, respectively; average survival time 5.85 and 6.74 days, respectively). A widely variable and fungal strain-dependent enzymatic activity of total proteases, Pr 1 and Pr 2 was found. Beauvericin, beauvericin A and bassianolide resulted the most prevalent toxins detected in the substrates analyzed. It has been found that an increase of beauvericin content in vivo resulted significantly correlated to a decrease of Tenebrio molitor larvae average survival time in entomopathogenic bioassay (inverse correlation). The involvement of beauvericin in B. bassiana entomopathogenic process is confirmed; in vitro analysis of cuticle degrading proteases activity and toxins production in relation to the methods adopted resulted insufficient for a rapid screening to determine the virulence of B. bassiana strains against Tenebrio molitor larvae.


Assuntos
Beauveria/patogenicidade , Depsipeptídeos/metabolismo , Proteínas de Insetos/metabolismo , Insetos/microbiologia , Peptídeo Hidrolases/metabolismo , Peptídeos Cíclicos/metabolismo , Tenebrio/microbiologia , Animais , Agentes de Controle Biológico , Larva/microbiologia , Controle Biológico de Vetores , Fatores de Virulência/metabolismo
2.
Bioinformation ; 18(4): 371-380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36909690

RESUMO

Genomic signatures of the protease and reverse transcriptase gene of HIV-1 from HIV infected North Indian patients who were under ART from 1 to ≤ 7 years were analyzed. The DNA from plasma samples of 9 patients and RNA from 57 patients were isolated and subjected to amplification for the protease and reverse transcriptase gene of HIV-1 subtype C. Then sequencing was carried out following the WHO dried blood spot protocol. The drug resistance mutation patterns were analyzed using the HIV Drug Resistance Database, Stanford University, USA. Lamivudine-associated drug-resistance mutations such as M184V/M184I, nevirapine-associated drug resistance mutations Y181C and H221Y, and efavirenz-associated drug resistance mutations M230I were observed in reverse transcriptase gene of archived DNA of two HIV-1 infected patients. No mutation was observed in the remaining 7 patients. Various computational tools and websites like viral epidemiological signature pattern analysis (VESPA), hyper mutation, SNAP version 2.1.1, and entropy were utilized for the analysis of the signature pattern of amino acids, hyper mutation, selection pressure, and Shannon entropy in the protease and reverse transcriptase gene sequences of the 9 archived DNA, 56 protease gene and 51 reverse transcriptase gene from the HIV-1 DNA amplified sequences of RNA. The HIV-1 Subtype-C (Gene bank accession number: AB023804) and first isolate HXB2 (Gene bank accession number: K03455.1) was taken as reference sequence. The signature amino acid sequences were identified in the protease and reverse transcriptase gene, no hyper mutation, highest entropy was marked in the amino acid positions and synonymous to non-synonymous nucleotide ratio was calculated in the protease and reverse transcriptase gene of 9 archived DNA sequences, 56 protease and 51 reverse transcriptase gene sequences of HIV-1 Subtype C isolates.

3.
Pathogens ; 11(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35890048

RESUMO

Fission yeast can be used as a cell-based system for high-throughput drug screening. However, higher drug concentrations are often needed to achieve the same effect as in mammalian cells. Our goal here was to improve drug sensitivity so reduced drugs could be used. Three different methods affecting drug uptakes were tested using an FDA-approved HIV-1 protease inhibitor (PI) drug Darunavir (DRV). First, we tested whether spheroplasts without cell walls increase the drug sensitivity. Second, we examined whether electroporation could be used. Although small improvements were observed, neither of these two methods showed significant increase in the EC50 values of DRV compared with the traditional method. In contrast, when DRV was tested in a mutant strain PR836 that lacks key proteins regulating cellular efflux, a significant increase in the EC50 was observed. A comparison of nine FDA-approved HIV-1 PI drugs between the wild-type RE294 strain and the mutant PR836 strain showed marked enhancement of the drug sensitivities ranging from an increase of 0.56 log to 2.48 logs. Therefore, restricting cellular efflux through the adaption of the described fission yeast mutant strain enhances the drug sensitivity, reduces the amount of drug used, and increases the chance of success in future drug discovery.

4.
Pathogens ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202872

RESUMO

Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.

5.
Eur J Pharmacol ; 884: 173327, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32726656

RESUMO

AIDS, a serious fatal disease caused by the human immunodeficiency virus (HIV), is an epidemic disease for which no effective vaccine has been established. The current therapeutic interventions for AIDS have limited efficacy because they are unable to clear HIV infections and the continuous occurrence of resistant HIV strains. Therefore, the exploitation of new drugs to prevent the spread of AIDS remains a high priority. In this study, the effects of icariin and its metabolite anhydroicaritin on SIV/HIV replication were investigated. In CEM × 174 cells and PBMC cells, both icariin and anhydroicaritin can significantly inhibit HIV-1 or SIVmac251 replication. Furthermore, molecular docking studies revealed that icariin and anhydroicaritin can act on both HIV reverse transcriptase and protease but could not bind to integrase. Reverse transcriptase and protease inhibition biological assays showed that both icariin and anhydroicaritin could significantly inhibit only HIV reverse transcriptase. In summary, the two compounds can significantly inhibit HIV/SIV in vitro and their targets may be mainly involved with HIV reverse transcriptase.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzopiranos/farmacologia , Flavonoides/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Adulto , Fármacos Anti-HIV/química , Benzopiranos/química , Linhagem Celular , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/crescimento & desenvolvimento , Humanos , Masculino , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Conformação Proteica , Inibidores da Transcriptase Reversa/química , Vírus da Imunodeficiência Símia/enzimologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
6.
Curr HIV Res ; 17(6): 429-440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31782368

RESUMO

BACKGROUND: HIV-1 protease inhibitor (PI) is one of the most potent classes of drugs in combinational antiretroviral therapies (cART). When a PI is used in combination with other anti- HIV drugs, cART can often suppress HIV-1 below detection thus prolonging the patient's lives. However, the challenge often faced by patients is the emergence of HIV-1 drug resistance. Thus, PIs with high genetic-barrier to drug-resistance are needed. OBJECTIVE: The objective of this study was to develop a novel and simple fission yeast (Schizosaccharomyces pombe) cell-based system that is suitable for high throughput screening (HTS) of small molecules against HIV-1 protease (PR). METHODS: A fission yeast RE294-GFP strain that stably expresses HIV-1 PR and green fluorescence protein (GFP) under the control of an inducible nmt1 promoter was used. Production of HIV-1 PR induces cellular growth arrest, which was used as the primary endpoint for the search of PIs and was quantified by an absorbance-based method. Levels of GFP production were used as a counter-screen control to eliminate potential transcriptional nmt1 inhibitors. RESULTS: Both the absorbance-based HIV-1 PR assay and the GFP-based fluorescence assay were miniaturized and optimized for HTS. A pilot study was performed using a small drug library mixed with known PI drugs and nmt1 inhibitors. With empirically adjusted and clearly defined double-selection criteria, we were able to correctly identify the PIs and to exclude all hidden nmt1 inhibitors. CONCLUSION: We have successfully developed and validated a fission yeast cell-based HTS platform for the future screening and testing of HIV-1 PR inhibitors.


Assuntos
Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , Ensaios de Triagem em Larga Escala , Schizosaccharomyces/genética , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Genes Reporter , Protease de HIV/genética , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Proteínas Recombinantes de Fusão , Reprodutibilidade dos Testes , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA