Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(5): 904-914, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575913

RESUMO

The chemical complexity of metabolomes goes hand in hand with their functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein-metabolite interaction (PMI) network underlies most if not all biological processes, but remains under-characterized. Herein, we highlight how co-fractionation mass spectrometry (CF-MS), a well-established approach to map protein assemblies, can be used for proteome and metabolome identification of the PMIs. We will review recent CF-MS studies, discuss the main advantages and limitations, summarize the available CF-MS guidelines, and outline future challenges and opportunities.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas , Proteoma/metabolismo , Mapas de Interação de Proteínas
2.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33554247

RESUMO

Interactions between proteins and small molecule metabolites play vital roles in regulating protein functions and controlling various cellular processes. The activities of metabolic enzymes, transcription factors, transporters and membrane receptors can all be mediated through protein-metabolite interactions (PMIs). Compared with the rich knowledge of protein-protein interactions, little is known about PMIs. To the best of our knowledge, no existing database has been developed for collecting PMIs. The recent rapid development of large-scale mass spectrometry analysis of biomolecules has led to the discovery of large amounts of PMIs. Therefore, we developed the PMI-DB to provide a comprehensive and accurate resource of PMIs. A total of 49 785 entries were manually collected in the PMI-DB, corresponding to 23 small molecule metabolites, 9631 proteins and 4 species. Unlike other databases that only provide positive samples, the PMI-DB provides non-interaction between proteins and metabolites, which not only reduces the experimental cost for biological experimenters but also facilitates the construction of more accurate algorithms for researchers using machine learning. To show the convenience of the PMI-DB, we developed a deep learning-based method to predict PMIs in the PMI-DB and compared it with several methods. The experimental results show that the area under the curve and area under the precision-recall curve of our method are 0.88 and 0.95, respectively. Overall, the PMI-DB provides a user-friendly interface for browsing the biological functions of metabolites/proteins of interest, and experimental techniques for identifying PMIs in different species, which provides important support for furthering the understanding of cellular processes. The PMI-DB is freely accessible at http://easybioai.com/PMIDB.


Assuntos
Aprendizado Profundo , Escherichia coli/metabolismo , Metaboloma , Mapas de Interação de Proteínas , Proteínas/metabolismo , Leveduras/metabolismo , Animais , Cromatografia Líquida , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Metabolômica , Camundongos , Interface Usuário-Computador
3.
Cell Mol Life Sci ; 79(11): 550, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242648

RESUMO

In budding yeast Saccharomyces cerevisiae, the switch from aerobic fermentation to respiratory growth is separated by a period of growth arrest, known as the diauxic shift, accompanied by a significant metabolic rewiring, including the derepression of gluconeogenesis and the establishment of mitochondrial respiration. Previous studies reported hundreds of proteins and tens of metabolites accumulating differentially across the diauxic shift transition. To assess the differences in the protein-protein (PPIs) and protein-metabolite interactions (PMIs) yeast samples harvested in the glucose-utilizing, fermentative phase, ethanol-utilizing and early stationary respiratory phases were analysed using isothermal shift assay (iTSA) and a co-fractionation mass spectrometry approach, PROMIS. Whereas iTSA monitors changes in protein stability and is informative towards protein interaction status, PROMIS uses co-elution to delineate putative PPIs and PMIs. The resulting dataset comprises 1627 proteins and 247 metabolites, hundreds of proteins and tens of metabolites characterized by differential thermal stability and/or fractionation profile, constituting a novel resource to be mined for the regulatory PPIs and PMIs. The examples discussed here include (i) dissociation of the core and regulatory particle of the proteasome in the early stationary phase, (ii) the differential binding of a co-factor pyridoxal phosphate to the enzymes of amino acid metabolism and (iii) the putative, phase-specific interactions between proline-containing dipeptides and enzymes of central carbon metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Carbono/metabolismo , Dipeptídeos/metabolismo , Etanol , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Prolina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835565

RESUMO

Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined. Existing assays for detecting protein-metabolite interactions have an additional limitation in the form of a limited capacity to identify interacting metabolites. Thus, although recent advances in mass spectrometry allow the routine identification and quantification of thousands of proteins and metabolites today, they still need to be improved to provide a complete inventory of biological molecules, as well as all interactions between them. Multiomic studies aimed at deciphering the implementation of genetic information often end with the analysis of changes in metabolic pathways, as they constitute one of the most informative phenotypic layers. In this approach, the quantity and quality of knowledge about PMIs become vital to establishing the full scope of crosstalk between the proteome and the metabolome in a biological object of interest. In this review, we analyze the current state of investigation into the detection and annotation of protein-metabolite interactions, describe the recent progress in developing associated research methods, and attempt to deconstruct the very term "interaction" to advance the field of interactomics further.


Assuntos
Metabolômica , Proteômica , Metabolômica/métodos , Proteômica/métodos , Metaboloma/fisiologia , Proteoma/metabolismo , Redes e Vias Metabólicas
5.
Plant J ; 98(5): 928-941, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735592

RESUMO

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Ácido Graxo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais
6.
Mol Syst Biol ; 15(8): e9008, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31464375

RESUMO

Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water-soluble proteins and polar metabolites in an entire biological subnetwork. To test the depth of our current knowledge, we chose to investigate the well-characterized Escherichia coli central metabolism. Using ligand-detected NMR, we assayed 29 enzymes towards binding events with 55 intracellular metabolites. Focusing on high-confidence interactions at a false-positive rate of 5%, we detected 98 interactions, among which purine nucleotides accounted for one-third, while 50% of all metabolites did not interact with any enzyme. In contrast, only five enzymes did not exhibit any metabolite binding and some interacted with up to 11 metabolites. About 40% of the interacting metabolites were predicted to be allosteric effectors based on low chemical similarity to their target's reactants. For five of the eight tested interactions, in vitro assays confirmed novel regulatory functions, including ATP and GTP inhibition of the first pentose phosphate pathway enzyme. With 76 new candidate regulatory interactions that have not been reported previously, we essentially doubled the number of known interactions, indicating that the presently available information about protein-metabolite interactions may only be the tip of the iceberg.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Metaboloma , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Guanosina Trifosfato/metabolismo , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Ligação Proteica
7.
J Exp Bot ; 68(13): 3487-3499, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28586477

RESUMO

Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.


Assuntos
Arabidopsis/genética , Cromatografia de Afinidade , Metabolômica , Núcleosídeo-Difosfato Quinase/genética , Proteínas de Plantas/genética , Proteômica , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas de Plantas/metabolismo
8.
Front Cell Dev Biol ; 12: 1377172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156977

RESUMO

Pregnancy is a complex process involving complex molecular interaction networks, such as between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite interactions. Advances in technology have led to the identification of many pregnancy-associated microRNA (miRNA), protein, and metabolite fingerprints in dairy cows. An array of miRNA, protein, and metabolite fingerprints produced during the early pregnancy of dairy cows were described. We have found the in silico interaction networks between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite. We have manually constructed miRNA-protein-metabolite interaction networks such as bta-miR-423-3p-IGFBP2-PGF2α interactomes. This interactome is obtained by manually combining the interaction network formed between bta-miR-423-3p-IGFBP2 and the interaction network between IGFBP2-PGF2α with IGFBP2 as a common interactor with bta-miR-423-3p and PGF2α with the provided sources of evidence. The interaction between bta-miR-423-3p and IGFBP2 has many sources of evidence including a high miRanda score of 169, minimum free energy (MFE) score of -25.14, binding probability (p) of 1, and energy of -25.5. The interaction between IGFBP2 and PGF2α occurs at high confidence scores (≥0.7 or 70%). Interestingly, PGF2α is also found to interact with different metabolites, such as PGF2α-PGD2, PGF2α-thromboxane B2, PGF2α-PGE2, and PGF2α-6-keto-PGF1α at high confidence scores (≥0.7 or 70%). Furthermore, the interactions between C3-PGE2, C3-PGD2, PGE2-PGD2, PGD2-thromboxane B2, PGE2-thromboxane B2, 6-keto-PGF1α-thromboxane B2, and PGE2-6-keto-PGF1α were also obtained at high confidence scores (≥0.7 or 70%). Therefore, we propose that miRNA-protein-metabolite interactomes involving miRNA, protein, and metabolite fingerprints of early pregnancy of dairy cows such as bta-miR-423-3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-keto-PGF1 alpha, and thromboxane B2 may form the key regulatory networks and players of pregnancy regulation in dairy cows. This is the first study involving miRNA-protein-metabolite interactomes obtained in the early pregnancy stage of dairy cows.

9.
Methods Mol Biol ; 2554: 11-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178617

RESUMO

Protein-metabolite interactions (PMIs) are fundamental for several biological processes. Even though PMI studies have increased in recent years, our knowledge is still limited. The screening of PMIs using small molecules as bait will broaden our ability to uncover novel PMIs, setting the basis for establishing their biological relevance. Here, we describe a protocol that allows the identification of multiple protein partners for one ligand. This protocol describes a straightforward methodology that can be adapted to a wide variety of organisms.


Assuntos
Proteínas , Cromatografia de Afinidade/métodos , Ligantes , Proteínas/metabolismo
10.
Methods Mol Biol ; 2554: 91-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178622

RESUMO

Proteome Integral Solubility Alteration (PISA) is a recently developed mass spectrometry-based, deep proteomics method for unbiased, proteome-wide target deconvolution of ligands, requiring no chemical ligand modification. PISA can be applied to living cells for studying target engagement in vivo or alternatively to protein extracts to identify in vitro ligand-interacting proteins. Here we describe the PISA workflow optimized in our lab. PISA improves the target discovery throughput 10-100 folds compared to the previously used proteomics methods and provides higher statistical significance for target candidates by enabling several biological replicates. Sample multiplexing makes all-in-one analysis of multiple ligands simultaneously possible. PISA dramatically reduces analysis costs, allowing many research questions in need of target deconvolution to be addressed, and unlocks the potential of miniaturizing biological models, including primary cells.


Assuntos
Proteoma , Proteômica , Ligantes , Espectrometria de Massas , Proteoma/metabolismo , Proteômica/métodos , Solubilidade
11.
Methods Mol Biol ; 2554: 107-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178623

RESUMO

Cellular protein-metabolite interactions (PMI), for decades relatively overlooked, are seeing a golden age in recent years. To facilitate simultaneous characterization of PMI and protein-protein interactions (PPI) of a given protein ("bait"), we developed a protocol that utilizes antibody-assisted affinity purification (AP) followed by liquid chromatography-mass spectrometry (LC-MS). Aside from its speed, simplicity, and adaptability to a variety of biological systems, its main strength lies in the parallel identification, in a near-physiological environment, of a given protein's protein and small-molecule partners.


Assuntos
Proteínas , Cromatografia de Afinidade/métodos , Cromatografia Líquida , Espectrometria de Massas/métodos , Proteínas/química
12.
Methods Mol Biol ; 2554: 141-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178625

RESUMO

The roles of small molecules in every aspect of life have been gaining increased recognition. Many are known to exert their effect by binding proteins-but a comprehensive overview of protein-metabolite interactions (PMIs) is missing. Recently we devised a non-targeted method for detecting PMIs using size-exclusion chromatography followed by proteomic and metabolomic analysis: PROMIS. Under test this method was able to identify known PMIs such as enzyme-cofactor complexes as well as novel ones.


Assuntos
Proteínas , Proteômica , Cromatografia em Gel , Espectrometria de Massas/métodos , Metabolômica , Proteômica/métodos
13.
Methods Mol Biol ; 2554: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178616

RESUMO

Protein-metabolite interactions regulate many important cellular processes but still remain understudied. Recent technological advancements are gradually uncovering the complexity of the protein-metabolite interactome. Here, we highlight some classic and recent examples of how protein metabolite interactions regulate metabolism, both locally and globally, and how this contributes to cellular physiology. We also discuss the importance of these interactions in diseases such as cancer.


Assuntos
Proteínas , Proteínas/metabolismo
14.
Methods Mol Biol ; 2554: 179-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178627

RESUMO

Computational approaches to the characterization and prediction of compound-protein interactions have a long research history and are well established, driven primarily by the needs of drug development. While, in principle, many of the computational methods developed in the context of drug development can also be applied directly to the investigation of metabolite-protein interactions, the interactions of metabolites with proteins (enzymes) are characterized by a number of particularities that result from their natural evolutionary origin and their biological and biochemical roles, as well as from a different problem setting when investigating them. In this review, these special aspects will be highlighted and recent research on them and developed computational approaches presented, along with available resources. They concern, among others, binding promiscuity, allostery, the role of posttranslational modifications, molecular steering and crowding effects, and metabolic conversion rate predictions. Recent breakthroughs in the field of protein structure prediction and newly developed machine learning techniques are being discussed as a tremendous opportunity for developing a more detailed molecular understanding of metabolism.


Assuntos
Biologia Computacional , Proteínas , Biologia Computacional/métodos , Aprendizado de Máquina
15.
Methods Mol Biol ; 2554: 231-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178629

RESUMO

Protein-metabolite interactions (PMIs) are directly responsible for the regulation of numerous processes. From the direct regulation of enzymes to complex developmental processes intermediated by hormones, PMIs are central to understanding the molecular mechanisms of important physiological phenomena. Still, proving such interactions experimentally has proven an arduous task. We discuss here some of the current technologies contributing to expand our knowledge on PMIs, with particular emphasis on platforms and databases to explore the highly heterogenous nature of characterized PMIs, which is likely to be an essential resource on the development of new computational approaches to predict and validate interactions based on large-scale PMI screenings.


Assuntos
Comunicação Celular , Gerenciamento de Dados , Bases de Dados Factuais , Hormônios , Metabolômica
16.
Methods Mol Biol ; 2554: 123-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178624

RESUMO

Saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy is an established technique for detecting and characterizing the binding of small molecules, such as metabolites, to biological macromolecules like proteins and nucleic acids. STD NMR allows detection of binding in complex mixtures of potential ligands, which is often used for library screening in the pharmaceutical industry but may also be beneficial for binding studies with metabolite mixtures. The nature of the ligand is normally restricted to small molecules in terms of NMR spectroscopy, and the size of the macromolecule on the other side should be larger than 10-15 kDa. This technique is especially applicable to detecting binders of intermediate to low affinity with the dissociation constant (KD) above 1 µM. In this chapter, we focus on recent developments and the applications of STD NMR to studying interactions of natural products and metabolites, in particular. The reader is also referred to excellent reviews of the field and the literature cited therein. This chapter also provides a detailed experimental protocol for performing the STD NMR measurement based on the example of the subunit A of the Na+-transporting NADH/ubiquinone oxidoreductase (Na+-NQR) from V. cholerae interacting with its natural quinone substrate and inhibitors.


Assuntos
Produtos Biológicos , Ácidos Nucleicos , Vibrio cholerae , Misturas Complexas , Ligantes , Espectroscopia de Ressonância Magnética/métodos , NAD/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/metabolismo , Oxirredutases/metabolismo , Ligação Proteica , Proteínas/química , Ubiquinona/metabolismo , Vibrio cholerae/metabolismo
17.
Front Pharmacol ; 12: 625543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093178

RESUMO

Background: The drug 5-aminosalicylic acid (5-ASA) is the first-line therapy for the treatment of patients with mild-to-moderate ulcerative colitis (UC). However, in some cases, 5-ASA cannot achieve the desired therapeutic effects. Therefore, patients have to undergo therapies that include corticosteroids, monoclonal antibodies or immunosuppressants, which are expensive and may be accompanied by significant side effects. Synergistic drug combinations can achieve greater therapeutic effects than individual drugs while contributing to combating drug resistance and lessening toxic side effects. Thus, in this study, we sought to identify synergistic drugs that can act synergistically with 5-ASA. Methods: We started our study with protein-metabolite analysis based on peroxisome proliferator-activated receptor gamma (PPARG), the therapeutic target of 5-ASA, to identify more additional potential drug targets. Then, we further evaluated the possibility of their synergy with PPARG by integrating Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis, pathway-pathway interaction analysis, and semantic similarity analysis. Finally, we validated the synergistic effects with in vitro and in vivo experiments. Results: The combination of 5-ASA and vorinostat (SAHA) showed lower toxicity and mRNA expression of p65 in human colonic epithelial cell lines (Caco-2 and HCT-116), and more efficiently alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis than treatment with 5-ASA and SAHA alone. Conclusion: SAHA can exert effective synergistic effects with 5-ASA in the treatment of UC. One possible mechanism of synergism may be synergistic inhibition of the nuclear factor kappa B (NF-kB) signaling pathway. Moreover, the metabolite-butyric acid may be involved.

18.
Front Plant Sci ; 12: 758933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003157

RESUMO

As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.

19.
Curr Opin Chem Biol ; 54: 28-36, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812894

RESUMO

Small molecule metabolites play important roles in regulating protein functions, which are acted through either covalent non-enzymatic post-translational modifications or non-covalent binding interactions. Chemical proteomic strategies can help delineate global landscapes of cellular protein-metabolite interactions and provide molecular insights about their mechanisms of action. In this review, we summarized the recent progress in developments and applications of chemoproteomic strategies to profile protein-metabolite interactions.


Assuntos
Metaboloma/fisiologia , Metabolômica/métodos , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos , Animais , Humanos
20.
Curr Protoc Plant Biol ; 4(4): e20101, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750999

RESUMO

Small molecules are not only intermediates of metabolism, but also play important roles in signaling and in controlling cellular metabolism, growth, and development. Although a few systematic studies have been conducted, the true extent of protein-small molecule interactions in biological systems remains unknown. PROtein-metabolite interactions using size separation (PROMIS) is a method for studying protein-small molecule interactions in a non-targeted, proteome- and metabolome-wide manner. This approach uses size-exclusion chromatography followed by proteomics and metabolomics liquid chromatography-mass spectrometry analysis of the collected fractions. Assuming that small molecules bound to proteins would co-fractionate together, we found numerous small molecules co-eluting with proteins, strongly suggesting the formation of stable complexes. Using PROMIS, we identified known small molecule-protein complexes, such as between enzymes and cofactors, and also found novel interactions. © 2019 The Authors. Basic Protocol 1: Preparation of native cell lysate from plant material Support Protocol: Bradford assay to determine protein concentration Basic Protocol 2: Separation of molecular complexes using size-exclusion chromatography Basic Protocol 3: Simultaneous extraction of proteins and metabolites using single-step extraction protocol Basic Protocol 4: Metabolomics analysis Basic Protocol 5: Proteomics analysis.


Assuntos
Metaboloma , Metabolômica , Cromatografia em Gel , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA