Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232496

RESUMO

Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits' N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not "amyloid-like" derivatives. This confirms that RNase A acts as an "auto-chaperone", although it displays many amyloid-prone short segments, including the 16-22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers' dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.


Assuntos
Amiloidose , Ribonuclease Pancreático , Acetatos , Amiloide , Endorribonucleases/metabolismo , Humanos , Fosfatos , Agregados Proteicos , Estrutura Terciária de Proteína , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Solventes
2.
J Biol Chem ; 295(6): 1623-1636, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31901077

RESUMO

Permeabilization of the mitochondrial outer membrane is a key step in the intrinsic apoptosis pathway, triggered by the release of mitochondrial intermembrane space proteins into the cytoplasm. The BCL-2-associated X apoptosis regulator (BAX) protein critically contributes to this process by forming pores in the mitochondrial outer membrane. However, the relative roles of the mitochondrial residence of BAX and its oligomerization in promoting membrane permeabilization are unclear. To this end, using both cell-free and cellular experimental systems, including membrane permeabilization, size-exclusion chromatography-based oligomer, and retrotranslocation assays, along with confocal microscopy analysis, here we studied two BAX C-terminal variants, T182I and G179P. Neither variant formed large oligomers when activated in liposomes. Nevertheless, the G179P variant could permeabilize liposome membranes, suggesting that large BAX oligomers are not essential for the permeabilization. However, when G179P was transduced into BAX/BCL2 agonist killer (BAK) double-knockout mouse embryonic fibroblasts, its location was solely cytoplasmic, and it then failed to mediate cell death. In contrast, T182I was inefficient in both liposome insertion and permeabilization. Yet, when transduced into cells, BAXT182I resided predominantly on mitochondria, because of its slow retrotranslocation and mediated apoptosis as efficiently as WT BAX. We conclude that BAX's mitochondrial residence in vivo, regulated by both targeting and retrotranslocation, is more significant for its pro-apoptotic activity than its ability to insert and to form higher-order oligomers in model membranes. We propose that this finding should be taken into account when developing drugs that modulate BAX activity.


Assuntos
Apoptose , Bicamadas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Camundongos , Mitocôndrias/genética , Permeabilidade , Mutação Puntual , Multimerização Proteica , Proteína X Associada a bcl-2/análise , Proteína X Associada a bcl-2/genética
3.
Biol Reprod ; 105(5): 1160-1170, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34309660

RESUMO

Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High-resolution localization by immunogold labeling electron microscopy of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.


Assuntos
Moléculas de Adesão Celular/genética , Espermatozoides/metabolismo , Sus scrofa/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Masculino , Cauda do Espermatozoide/metabolismo , Espermatogênese
4.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212787

RESUMO

The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size-hydrophobicity-toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.


Assuntos
Agregação Patológica de Proteínas/terapia , Multimerização Proteica , Deficiências na Proteostase/terapia , Animais , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
5.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 76-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27783927

RESUMO

Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.


Assuntos
Amiloide/química , Multimerização Proteica , Ribonuclease Pancreático/química , Amidas/química , Animais , Asparagina/química , Asparagina/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Bovinos , Estabilidade Enzimática , Glutamina/química , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Ribonuclease Pancreático/genética
6.
Proc Natl Acad Sci U S A ; 111(50): 17869-74, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453085

RESUMO

Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the ß-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory.


Assuntos
Amiloide/biossíntese , Amiloide/metabolismo , Modelos Moleculares , Agregados Proteicos/fisiologia , Amiloide/fisiologia , Simulação de Dinâmica Molecular , Conformação Proteica
7.
J Neurosci Res ; 93(3): 410-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25377128

RESUMO

The formation of amyloid ß (Aß) peptide aggregates, oligomers, and fibrils is a dynamic process; however, the kinetics of their formation is not well understood. This study compares the time course of aggregate/fibril formation by transmission electron microscopy (TEM) analyses with that of oligomer/fibril formation by Western blot analysis under native and denaturing conditions. Efforts to deaggregate/defibrillate these peptides by using hexafluoroisopropanol, ammonium hydroxide, or dimethylsulfoxide did not change the nondenaturing polyacrylamide gel electrophoresis (PAGE) footprints or drive the peptides to a monomeric species. Regardless of the pretreatment protocol, TEM analyses reveal that all Aß peptides (Aß40, Aß42, Aß39E22Δ [Osaka], Aß40E22G [Arctic], Aß40E22Q [Dutch], and Aß40A2T [Icelandic]) immediately formed nonfibrillar, amorphous aggregates when first placed into solution with the Osaka mutation, quickly forming early-stage fibrils. The extent of fibril formation for other Aß peptides is time dependent, with the Arctic mutation forming fibrils at 1 hr, the Dutch and Icelandic at 4 hr, Aß42 at 8 hr, and Aß40 at 24 hr. In contrast, nondenaturing PAGE revealed unique footprints for the different Aß species. The rapidity of aggregate formation and the rapid transition to fibrils, particularly for the Osaka deletion, suggest an important role for aggregates/fibrils of Aß in the development of neuronal degeneration.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Amiloide/genética , Fragmentos de Peptídeos/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Mutação , Fragmentos de Peptídeos/metabolismo , Deleção de Sequência
8.
Chembiochem ; 15(4): 517-21, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24449526

RESUMO

Monomeric cyt c has been reported to bind to the mitochondrial membrane by electrostatic and hydrophobic interactions with anionic phospholipids. We have previously shown that domain-swapped oligomeric cyt c retains the secondary structure of the monomer, and its surface possesses a larger area and more charges compared to the monomer. However, the effect of oligomerization of cyt c on cells has yet to be revealed. Herein, we investigated the interaction of oligomeric cyt c with anionic phospholipid-containing vesicles and the outer membrane of HeLa cells. Oligomeric cyt c interacted more strongly than monomeric cyt c with anionic phospholipid-containing vesicles and the outer membrane of HeLa cells. Oligomeric cyt c induced lateral phase separation of lipids in LUVs and GUVs, thereby leading to membrane disruption, whereas monomeric cyt c did not. Morphological changes in HeLa cells resulted from interaction with oligomeric cyt c, but little from interaction with the monomer. These results show that domain-swapped oligomeric proteins might exhibit properties different to those of monomer in cell systems.


Assuntos
Membrana Celular/metabolismo , Citocromos c/metabolismo , Animais , Membrana Celular/química , Forma Celular , Citocromos c/química , Células HeLa , Cavalos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Fosfolipídeos/química , Multimerização Proteica , Estrutura Terciária de Proteína
9.
ACS Chem Neurosci ; 15(6): 1125-1134, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38416693

RESUMO

Oligomeric assemblies of the amyloid ß peptide (Aß) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aß40 (the 40-residue form of Aß) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aß40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer's disease by the stabilization of Aß oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Metais , Íons , Fragmentos de Peptídeos/química
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230234, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853565

RESUMO

How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Peptídeos beta-Amiloides , Encéfalo , Potenciação de Longa Duração , Proteínas tau , Animais , Humanos , Masculino , Ratos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Ratos Transgênicos , Proteínas tau/metabolismo , Proteínas tau/farmacologia
11.
FEBS J ; 290(19): 4712-4725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37287403

RESUMO

Here, we used domain 3 of dengue virus serotype 3 envelope protein (D3ED3), a natively folded globular low-immunogenicity protein, to ask whether the biophysical nature of amorphous oligomers can affect immunogenicity. We prepared nearly identical 30 ~ 50 nm-sized amorphous oligomers in five distinct ways and looked at any correlation between their biophysical properties and immunogenicity. One oligomer type was produced using our SCP tag (solubility controlling peptide) made of 5 isoleucines (C5I). The others were prepared by miss-shuffling the SS bonds (Ms), heating (Ht), stirring (St) and freeze-thaw (FT). Dynamic light scattering showed that all five formulations contained oligomers of approximately identical sizes with hydrodynamic radii (Rh) between 30 and 55 nm. Circular dichroism (cd) indicated that the secondary structure content of oligomers formed by stirring and freeze-thaw was essentially identical to that of the native monomeric D3ED3. The secondary structure content of the Ms showed moderate changes, whereas the C5I and heat-induced (Ht) oligomers exhibited a significant change. The Ms contained D3ED3 with intermolecular SS bonds as assessed by nonreducing size exclusion chromatography (SEC). Immunization in JcL:ICR mice showed that both C5I and Ms significantly increased the anti-D3ED3 IgG titre. Ht, St and FT were only mildly immunogenic, similar to the monomeric D3ED3. Cell surface CD marker analysis by flow cytometry confirmed that immunization with Ms generated a strong central and effector T-cell memory. Our observations indeed suggest that controlled oligomerization can provide a new, adjuvant-free method for increasing a protein's immunogenicity, yielding a potentially powerful platform for protein-based (subunit) vaccines.


Assuntos
Amiloide , Peptídeos , Animais , Camundongos , Camundongos Endogâmicos ICR , Estrutura Secundária de Proteína , Amiloide/química , Imunidade
12.
FEBS J ; 290(1): 112-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851748

RESUMO

Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aß (Aß42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aß42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aß42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aß42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aß42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Humanos , Animais , Receptores de N-Metil-D-Aspartato/genética , Peptídeos beta-Amiloides/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo
13.
Int J Mol Sci ; 13(8): 9400-9418, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949804

RESUMO

Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies.


Assuntos
Amiloide/química , Espectrina/química , Amiloide/metabolismo , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Dobramento de Proteína , Multimerização Proteica , Espectrina/genética , Espectrina/metabolismo , Espectrometria de Fluorescência , Domínios de Homologia de src
14.
Curr Res Struct Biol ; 4: 356-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523328

RESUMO

Protein oligomerization has two notable aspects: it is crucial for the performing cellular and molecular processes accurately, and it produces amyloid fibril precursors. Although a clear explanation for amyloidosis as a whole is lacking, most studies have emphasized the importance of protein misfolding followed by formation of cytotoxic oligomer structures, which are responsible for disorders as diverse as neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and metabolic disorders, such as type 2 diabetes. Constant surveillance by oligomeric protein structures known as molecular chaperones enables cells to overcome the challenge of misfolded proteins and their harmful assemblies. These molecular chaperones encounter proteins in cells, and benefit cell survival as long as they perform correctly. Thus, this review highlights the roles of structural aspects of chaperone protein oligomers in determining cell fate-either succumbing to amyloid oligomers or survival-as well as experimental approaches used to investigate these entities.

15.
Int J Biol Macromol ; 205: 185-192, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182560

RESUMO

Evolving insect resistance to delta-endotoxins can be delayed by using a few strategies like high dosage, refugia, and gene stacking which require the expression of delta-endotoxins at sufficiently high levels to kill the resistant insects. In this study, we comparatively analyzed the efficacy of targeting truncated cry1Ac protein to the cytoplasm, endoplasmic reticulum (ER), and chloroplast to obtain high protein expression. mRNA and protein profiling of cry1Ac showed that both ER and chloroplast are efficient targets for expressing high levels of truncated cry1Ac. A maximum of 0.8, 1.6, and 2.0% cry1Ac of total soluble protein were obtained when the truncated cry1Ac was expressed in the cytoplasm, routed through ER, and targeted to the chloroplast. We further showed that not only the protein content but also the biological activity of truncated cry1Ac increases by sub-cellular targeting and the biological activity is slightly greater in the ER routed transgenic lines by conducting different bioassays on Helicoverpa armigera. Using native Western analysis, we demonstrated that the truncated cry1Ac protein could exist as oligomers in plant cells and this oligomerization capability is low in the cytoplasm. In conclusion, routing of delta endotoxins through ER is the first choice to obtain high protein expression and bioactivity.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/metabolismo , Mariposas/genética
16.
Int J Biol Macromol ; 218: 243-258, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878661

RESUMO

Fibroblast growth factor 2 (FGF2) is a pleiotropic protein engaged in the regulation of key cellular processes in a wide spectrum of cells. FGF2 is an important object of basic research as well as a molecule used in regenerative medicine, in vitro cell culture maintenance, and as an anticancer drug carrier. However, the unsatisfactory stability and pleiotropic activities of the wild-type FGF2 largely limit its use as a medical product. To overcome these limitations, we have designed a set of FGF2-based macromolecules via sortase A-mediated cyclization and oligomerization. We obtained heparin-switchable FGF2 variants with enhanced stability and improved ability to stimulate cell proliferation and migration. We have shown that stimulation of glucose uptake by adipocytes is modulated by the architecture of FGF2 oligomers. Moreover, we used hyper-stable FGF2 variants for the construction of highly effective drug carriers for selective killing of FGFR1-overproducing cancer cells. The strategy for FGF2 engineering presented in this work provides novel insights into the design of growth factor variants for regenerative and anti-cancer precise medicine.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparina/farmacologia , Humanos
17.
Cell Rep Methods ; 2(3): 100184, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475219

RESUMO

Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química
18.
Acta Crystallogr D Struct Biol ; 77(Pt 7): 904-920, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196617

RESUMO

ParD2 is the antitoxin component of the parDE2 toxin-antitoxin module from Vibrio cholerae and consists of an ordered DNA-binding domain followed by an intrinsically disordered ParE-neutralizing domain. In the absence of the C-terminal intrinsically disordered protein (IDP) domain, V. cholerae ParD2 (VcParD2) crystallizes as a doughnut-shaped hexadecamer formed by the association of eight dimers. This assembly is stabilized via hydrogen bonds and salt bridges rather than by hydrophobic contacts. In solution, oligomerization of the full-length protein is restricted to a stable, open decamer or dodecamer, which is likely to be a consequence of entropic pressure from the IDP tails. The relative positioning of successive VcParD2 dimers mimics the arrangement of Streptococcus agalactiae CopG dimers on their operator and allows an extended operator to wrap around the VcParD2 oligomer.


Assuntos
Antitoxinas/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Vibrio cholerae/metabolismo , Multimerização Proteica
19.
Mol Neurodegener ; 16(1): 11, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618749

RESUMO

BACKGROUND: High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of patients with rapidly progressive Alzheimer's disease (rpAD). The current investigation aims at identifying interacting partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression. METHODS: HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser scanning microscopy. RESULTS: We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2). Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the end binding protein 1, α-tubulin, and ß-actin. DISCUSSION: The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Citoesqueleto/metabolismo , Proteínas Priônicas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citoesqueleto/patologia , Progressão da Doença , Humanos , Neurônios/metabolismo
20.
Curr Protoc Plant Biol ; 5(2): e20107, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250554

RESUMO

Protein-protein interactions, including oligomerization, are involved in regulation of many cellular processes. Unfortunately, many proteins are expressed at a very low level in vivo, making it challenging to observe oligomerization by size-exclusion chromatography, also known as gel filtration. In this protocol, we present detailed steps to perform blue native polyacrylamide gel electrophoresis (BN-PAGE), a method to study protein oligomers in plants. The article describes protein sample preparation from transgenic Arabidopsis thaliana and running a BN-PAGE gel followed by direct western blotting or, alternatively, two-dimensional sodium dodecyl sulfide-polyacrylamide gel electrophoresis (2D SDS-PAGE). This protocol will be helpful for new researchers conducting related experiments to analyze stable protein interactions including homo- or hetero-oligomerization in plants. © 2020 The Authors.


Assuntos
Proteínas de Membrana , Western Blotting , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Eletroforese em Gel de Poliacrilamida Nativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA