Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neurobiol Dis ; 188: 106342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918759

RESUMO

SUMOylation is a post-translational modification (PTM) that exerts a regulatory role in different cellular processes, including protein localization, aggregation, and biological activities. It consists of the dynamic formation of covalent isopeptide bonds between a family member of the Small Ubiquitin Like Modifiers (SUMOs) and the target proteins. Interestingly, it is a cellular mechanism implicated in several neurodegenerative pathologies and potentially it could become a new therapeutic target; however, there are very few pharmacological tools to modulate the SUMOylation process. In this study, we have designed and tested the activity of a novel small cell-permeable peptide, COV-1, in a neuroblastoma cell line that specifically prevents protein SUMOylation. COV-1 inhibits UBC9-protein target interaction and efficiently decreases global SUMO-1ylation. Moreover, it can perturb RanGAP-1 perinuclear localization by inducing the downregulation of UBC9. In parallel, we found that COV-1 causes an increase in the ubiquitin degradation system up to its engulfment while enhancing the autophagic flux. Surprisingly, COV-1 modifies protein aggregation, and specifically it mislocalizes TDP-43 within cells, inducing its aggregation and co-localization with SUMO-1. These data suggest that COV-1 could be taken into future consideration as an interesting pharmacological tool to study the cellular cascade effects of SUMOylation prevention.


Assuntos
Proteínas de Ligação a DNA , Sumoilação , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Ubiquitina/metabolismo , Peptídeos/metabolismo
2.
Angew Chem Int Ed Engl ; 62(1): e202215360, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345707

RESUMO

The unique thermodynamic and kinetic coordination chemistry of ruthenium allows it to modulate key adverse aggregation and membrane interactions of α-synuclein (α-syn) associated with Parkinson's disease. We show that the low-toxic RuIII complex trans-[ImH][RuCl4 (Me2 SO)(Im)] (NAMI-A) has dual inhibitory effects on both aggregation and membrane interactions of α-syn with submicromolar affinity, and disassembles pre-formed fibrils. NAMI-A abolishes the cytotoxicity of α-syn towards neuronal cells and mitigates neurodegeneration and motor impairments in a rat model of Parkinson's. Multinuclear NMR and MS analyses show that NAMI-A binds to residues involved in protein aggregation and membrane binding. NMR studies reveal the key steps in pro-drug activation and the effect of activated NAMI-A species on protein folding. Our findings provide a new basis for designing ruthenium complexes which could mitigate α-syn-induced Parkinson's pathology differently from organic agents.


Assuntos
Compostos Organometálicos , Doença de Parkinson , Rutênio , Ratos , Animais , alfa-Sinucleína/química , Doença de Parkinson/patologia , Rutênio/farmacologia , Rutênio/química , Compostos Organometálicos/química
3.
Pharmacol Res ; 182: 106346, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809766

RESUMO

Identification of the drug target of lead compounds is an important means for rapid and efficient drug discovery. Protein chips are a high-throughput protein function analysis technology that has been widely used in screening drug protein targets in recent years. However, the verification of the results after high-throughput protein chip screening is still cumbersome. Based on our mature protein chip preparation platform, we prepared a protein chip containing 150 important high-frequency protein targets and used antibodies to prove the availability of the protein chip. To improve the accuracy of target screening, we combined the label-free differential scanning fluorimetry (DSF) with the protein chip, proposing the Chip-DSF strategy. Subsequently, we tested the method with small molecular ginsenoside-Rg2 (Rg2). The Chip-DSF strategy was used to successfully screen the potential target protein KRAS(G12C) of Rg2. Consistently, we found that Rg2 could inhibit NCI-H23 cell proliferation by inducing cell cycle arrest. Also, we found that Rg2 could reduce the amount of KRAS protein and inhibit the phosphorylation of KRAS downstream key signaling protein ERK1, RPS6, and P70S6K in NCI-H23 cells. Collectively, our Chip-DSF strategy could achieve rapid target verification which improved the accuracy and efficiency of target screening of protein chips.


Assuntos
Proteínas , Proteínas Proto-Oncogênicas p21(ras) , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Fosforilação
4.
Parasitol Res ; 121(7): 1853-1865, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35552534

RESUMO

Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.


Assuntos
Toxoplasma , Toxoplasmose , Interações Hospedeiro-Parasita , Humanos , Proteoma/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasmose/parasitologia
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409257

RESUMO

Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1's oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.


Assuntos
Simulação de Dinâmica Molecular , Isomerases de Dissulfetos de Proteínas , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/química
6.
Crit Care ; 25(1): 204, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116714

RESUMO

BACKGROUND AND AIMS: Combining energy and protein targets during the acute phase of critical illness is challenging. Energy should be provided progressively to reach targets while avoiding overfeeding and ensuring sufficient protein provision. This prospective observational study evaluated the feasibility of achieving protein targets guided by 24-h urinary nitrogen excretion while avoiding overfeeding when administering a high protein-to-energy ratio enteral nutrition (EN) formula. METHODS: Critically ill adult mechanically ventilated patients with an APACHE II score > 15, SOFA > 4 and without gastrointestinal dysfunction received EN with hypocaloric content for 7 days. Protein need was determined by 24-h urinary nitrogen excretion, up to 1.2 g/kg (Group A, N = 10) or up to 1.5 g/kg (Group B, N = 22). Variables assessed included nitrogen intake, excretion, balance; resting energy expenditure (REE); phase angle (PhA); gastrointestinal tolerance of EN. RESULTS: Demographic characteristics of groups were similar. Protein target was achieved using urinary nitrogen excretion measurements. Nitrogen balance worsened in Group A but improved in Group B. Daily protein and calorie intake and balance were significantly increased in Group B compared to Group A. REE was correlated to PhA measurements. Gastric tolerance of EN was good. CONCLUSIONS: Achieving the protein target using urinary nitrogen loss up to 1.5 g/kg/day was feasible in this hypercatabolic population. Reaching a higher protein and calorie target did not induce higher nitrogen excretion and was associated with improved nitrogen balance and a better energy intake without overfeeding. PhA appears to be related to REE and may reflect metabolism level, suggestive of a new phenotype for nutritional status. Trial registration 0795-18-RMC.


Assuntos
Nutrição Enteral/normas , Proteínas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Estado Terminal/terapia , Ingestão de Alimentos/fisiologia , Nutrição Enteral/métodos , Nutrição Enteral/tendências , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nitrogênio/análise , Nitrogênio/sangue , Nitrogênio/metabolismo , Estado Nutricional
7.
Can J Microbiol ; 67(11): 799-812, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237220

RESUMO

Haemophilus influenzae colonizes the respiratory tract and is associated with life-threatening invasive infections. The recent rise in its global prevalence, even in the presence of multiple vaccines, indicates an urgent need to develop effective cross-strain vaccine strategies. Our work focused on identifying the universally conserved antigenic regions of H. influenzae that can be used to develop new vaccines. A variety of bioinformatics tools were applied for the comprehensive geno-proteomic analysis of H. influenzae type a strain, as reference serotype, through which subcellular localization, essentiality, virulence, and non-host homology were determined. B and T cell epitope mapping of the 3D protein structures were performed. Thereafter, molecular docking with HLA_DRB1*0101 and comparative genome analysis established the candidature of the identified regions. Based on the established vaccinomics criteria, five target proteins were predicted as novel vaccine candidates. Among these, nine epitopic regions that could regulate lymphocyte activity through strong protein-protein interactions were identified. Comparative genomic analysis revealed that the identified regions were highly conserved among the different strains of H. influenzae. Based on multiple immunogenic factors, five prioritized proteins and their predicted epitopes were identified as ideal common putative vaccine candidates against typeable strains.


Assuntos
Haemophilus influenzae , Vacinas , Epitopos de Linfócito T/genética , Haemophilus influenzae/genética , Simulação de Acoplamento Molecular , Proteoma
8.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502067

RESUMO

With their wide repertoire of mechanisms, antimicrobial peptides (AMPs) are promising alternatives to fight against varied pathogenic microorganisms (bacteria, fungi, viruses, parasites, etc.). AMPs, novel components of the innate immune defense system, are secreted by all organisms. The aquatic environment represents a huge population and an enormous source of varied AMPs. Polyphemusin-I, a marine AMP isolated from hemocytes of an American horseshoe crab, possesses high antimicrobial activities. Studies on polyphemusin-I have verified the intracellular mechanisms of action, however, its intracellular targets are not yet explored. In this study, we employed Escherichia coli proteome microarrays to systematically screen the entire intracellular protein targets of polyphemusin-I. A total of 97 protein targets of polyphemusin-I were statistically analyzed from the quadruplicate Escherichia coli proteome microarrays assays. Among these identified protein targets, 56 proteins had cellular location inside the cell (i.e., cytoplasm), one in the plasma membrane, one in the periplasm and the rest 39 proteins had no specified cellular location. The bioinformatics analysis of these identified protein targets of polyphemusin-I in gene ontology (GO) enrichment category of molecular function revealed significant enrichment in nucleic acid related GO terms i.e., "RNA binding", "nucleotide binding", "nuclease activities", "uracil DNA N-glycosylase activities" and others. Moreover, enrichment in GO category of biological process also depicted enrichment in nucleic acid related GO terms, such as "nucleic acid phosphodiester bond hydrolysis", "deoxyribonucleotide metabolism", and others. In accordance to GO enrichment analysis, protein families (PFAM) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis also showed significant enrichment in nucleic acid terms. These enrichment results suggest that polyphemusin-I targets nucleic acid-associated proteins. Furthermore, to provide a comprehensive study, we compared the identified protein targets of polyphemusin-I with previously identified protein targets of four AMPs (P-Der, Lfcin B, PR-39, and Bac 7) using Escherichia coli proteome microarrays. The comparison study of five AMPs (polyhemusin-I, P-Der, Lfcin B, PR-39, and Bac 7) showed only nine common protein targets in all the five AMPs, whereas a total of 39 and 43 common protein targets were identified among the two marine AMPs (polyphemusin-I and P-Der) and three terrestrial AMPs (Lfcin B, PR-39 and Bac7), respectively. To further reveal the target pattern of marine and terrestrial AMPs, the enrichment results obtained from common protein targets of marine AMPs with terrestrial AMPs were compared. The comparison result indicated that AMPs have unique mechanism of action among marine or terrestrial AMPs. Hence, in this study, we have not only identified the intracellular protein targets of polyphemusin-I, but also revealed the protein target differences between marine AMPs and terrestrial AMPs.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Descoberta de Drogas/métodos , Proteínas de Escherichia coli/metabolismo , Análise Serial de Proteínas/métodos , Proteoma/metabolismo , Escherichia coli , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteoma/efeitos dos fármacos , Proteoma/genética
9.
Proteomics ; : e1900372, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32578935

RESUMO

Thermal proteome profiling is a powerful energetic-based chemical proteomics method to reveal the ligand-protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost-effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC-MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off-targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP-PNP), as the ligand. As a result, a total of 123 AMP-PNP-sensitive proteins are found, of which 59 proteins are stabilized by AMP-PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.

10.
BMC Bioinformatics ; 21(1): 238, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522154

RESUMO

BACKGROUND: Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly established or unknown mechanisms. While there is a wealth of data on the biological and biophysical properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds commonly present in food. Computational methods for high-throughput identification of food compounds with specific biological effects, especially when accompanied by relevant food composition data, could enable more effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of foods and food compounds. RESULTS: PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a library of food compounds with known molecular structures from the FooDB database. The output is a list of food compounds with high confidence of eliciting relevant biological effects, along with their source foods and associated quantities in those foods, where available. Applying PhyteByte to the human PPARG gene, we identified irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified agonists of this important metabolic regulator. CONCLUSIONS: PhyteByte identifies food-based compounds that are predicted to interact with specific protein targets. The identified relationships can be used to prioritize food compounds for experimental or epidemiological follow-up and can contribute to the rapid development of precision approaches to new nutraceuticals as well as personalized dietary planning.


Assuntos
Análise de Alimentos/métodos , Compostos Fitoquímicos/química , Humanos
11.
Crit Care ; 24(1): 447, 2020 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-32684170

RESUMO

Five to 10% of the coronavirus SARS-CoV-2-infected patients, i.e., with new coronavirus disease 2019 (COVID-19), are presenting with an acute respiratory distress syndrome (ARDS) requiring urgent respiratory and hemodynamic support in the intensive care unit (ICU). However, nutrition is an important element of care. The nutritional assessment and the early nutritional care management of COVID-19 patients must be integrated into the overall therapeutic strategy. The international recommendations on nutrition in the ICU should be followed. Some specific issues about the nutrition of the COVID-19 patients in the ICU should be emphasized. We propose a flow chart and ten key issues for optimizing the nutrition management of COVID-19 patients in the ICU.


Assuntos
Infecções por Coronavirus/terapia , Unidades de Terapia Intensiva , Terapia Nutricional , Pneumonia Viral/terapia , COVID-19 , Humanos , Avaliação Nutricional , Pandemias , Guias de Prática Clínica como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Bioessays ; 40(4): e1700247, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473971

RESUMO

Proteolysis-targeting chimeric molecules (PROTACs) represent an emerging technique that is receiving much attention for therapeutic intervention. The mechanism is based on the inhibition of protein function by hijacking a ubiquitin E3 ligase for protein degradation. The hetero-bifunctional PROTACs contain a ligand for recruiting an E3 ligase, a linker, and another ligand to bind with the protein targeted for degradation. Thus, PROTACs have profound potential to eliminate "undruggable" protein targets, such as transcription factors and non-enzymatic proteins, which are not limited to physiological substrates of the ubiquitin-proteasome system. These findings indicate great prospects for PROTACs in the development of therapeutics. However, there are several limitations related to poor stability, biodistribution, and penetrability in vivo. This review provides an overview of the main PROTAC-based approaches that have been developed and discusses the promising opportunities and considerations for the application of this technology in therapies and drug discovery.


Assuntos
Descoberta de Drogas/métodos , Proteínas/metabolismo , Animais , Humanos , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182593

RESUMO

Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.


Assuntos
Aptâmeros de Nucleotídeos/química , Quadruplex G , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Anti-Inflamatórios/química , Anticoagulantes/química , Antineoplásicos/química , Antivirais/química , Complexo CD3/química , Moléculas de Adesão Celular/química , DNA/química , Dimerização , Humanos , Imunoglobulina M/química , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Pirrolidinas/química , Receptores Proteína Tirosina Quinases/química , Receptores de Antígenos de Linfócitos T/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitronectina/química , Nucleolina
14.
Helicobacter ; 24(3): e12577, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30950149

RESUMO

BACKGROUND: Helicobacter pylori (H pylori) is a disease-causing pathogen capable of surviving under acidic conditions of the human stomach. Almost half of the world's population is infected with H pylori, with gastric cancer being the most unsatisfactory prognosis. Although H pylori has been discovered 30 years ago, the effective treatment and elimination of H pylori continue to be problematic. MATERIALS AND METHODS: In our study, we screened nucleic acid aptamers using H pylori surface recombinant antigens as targets. Trypsin was used for separating aptamers that were bound to proteins. Following nine rounds of screening, we performed sequence similarity analyses to assess whether the aptamers can recognize the target protein. Two sequences with desirable recognition ability were selected for affinity detection. Aptamer Hp4 with the strongest binding ability to the H pylori surface recombinant antigen was chosen. After optimization of the binding conditions, we conducted specificity tests for Hp4 using Escherichia coli, Staphylococcus aureus, Vibrioanguillarum, and H pylori. RESULTS: The data indicated that the aptamer Hp4 had an equilibrium dissociation constant (Kd ) of 26.48 ± 5.72 nmol/L to the target protein. This aptamer was capable of exclusively detecting H pylori cells, without displaying any specificity for other bacteria. CONCLUSIONS: We obtained a high-affinity aptamer for H pylori, which is expected to serve as a new molecular probe for detection of H pylori.


Assuntos
Antígenos de Bactérias/imunologia , Aptâmeros de Nucleotídeos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Neoplasias Gástricas/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Humanos , Transporte Proteico , Proteínas Recombinantes , Estômago/microbiologia
15.
Part Fibre Toxicol ; 16(1): 46, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775802

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs), as promising anti-microbials and anti-cancer therapeutics, the toxicological effect and killing efficiency towards cells need in-depth investigation for better applications in daily life and healthcare fields. Thus far, limited studies have yet elucidated the protein targets of AgNPs and silver ions (Ag+) released from intracellular AgNPs dissolution in hepatocytes, as well as potential interaction mechanism. RESULTS: Through integrating proteomic and metallomic methodologies, six intracellular protein targets (i.e. glutathione S-transferase (GST), peroxiredoxin, myosin, elongation factor 1, 60S ribosomal protein and 40S ribosomal protein) were ultimately identified and confirmed as AgNPs- and Ag+ -binding proteins. Toward a deep understanding the direct interaction mechanism between AgNPs and these protein targets, GST was chosen as a representative for toxicological investigation. The results revealed that AgNPs could remarkably deplete the enzyme activity of GST but did not depress the expressions, resulting in elevated intracellular oxidative stress and cell death. Finally, both "Ag+ effect" and "particle-specific effect" were demonstrated to concomitantly account for the overall cytotoxicity of AgNPs, and the former relatively contributed more via activity depletion of GST. CONCLUSIONS: Collectively, our major contribution is the development of an efficient strategy to identify the intracellular AgNPs-targeted protein (e.g. GST) through integrating proteomic and metallomic methodologies, which is helpful to accelerate the interpretation of underlying toxicological mechanism of AgNPs.


Assuntos
Glutationa Transferase/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Proteômica/métodos , Prata/toxicidade , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Fígado/enzimologia , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Prata/metabolismo , Propriedades de Superfície
16.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1429-1447, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27865995

RESUMO

Nucleic acid aptamers are single-stranded DNA or RNA molecules identified to recognize with high affinity specific targets including proteins, small molecules, ions, whole cells and even entire organisms, such as viruses or bacteria. They can be identified from combinatorial libraries of DNA or RNA oligonucleotides by SELEX technology, an in vitro iterative selection procedure consisting of binding (capture), partitioning and amplification steps. Remarkably, many of the aptamers selected against biologically relevant protein targets are G-rich sequences that can fold into stable G-quadruplex (G4) structures. Aiming at disseminating novel inspiring ideas within the scientific community in the field of G4-structures, the emphasis of this review is placed on: 1) recent advancements in SELEX technology for the efficient and rapid identification of new candidate aptamers (introduction of microfluidic systems and next generation sequencing); 2) recurrence of G4 structures in aptamers selected by SELEX against biologically relevant protein targets; 3) discovery of several G4-forming motifs in important regulatory regions of the human or viral genome bound by endogenous proteins, which per se can result into potential aptamers; 4) an updated overview of G4-based aptamers with therapeutic potential and 5) a discussion on the most attractive G4-based aptamers for diagnostic applications. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Anticoagulantes/uso terapêutico , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Técnicas Biossensoriais , Quadruplex G , Guanosina/metabolismo , Animais , Anticoagulantes/química , Anticoagulantes/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antivirais/química , Antivirais/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Portadores de Fármacos , Guanosina/química , Humanos , Ligantes , Valor Preditivo dos Testes , Ligação Proteica , Técnica de Seleção de Aptâmeros , Relação Estrutura-Atividade
17.
Phytomedicine ; 117: 154929, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329754

RESUMO

BACKGROUND: Triptolide (TP) is a highly active natural medicinal ingredient with significant potential in anticancer. The strong cytotoxicity of this compound suggests that it may have a wide range of targets within cells. However, further target screening is required at this stage. Traditional drug target screening methods can be significantly optimized using artificial intelligence (AI). PURPOSE:  This study aimed to identify the direct protein targets and explain the multitarget action mechanism of the anti-tumor effect of TP with the help of AI. METHODS:  The CCK8, scratch test, and flow cytometry analysis were used to examine cell proliferation, migration, cell cycle, and apoptosis in tumor cells treated with TP in vitro. The anti-tumor effect of TP in vivo was evaluated by constructing a tumor model in nude mice. Furthermore, we established a simplified thermal proteome analysis (TPP) method based on XGBoost (X-TPP) to rapidly screen the direct targets of TP. RESULTS: We validated the effects of TP on protein targets through RNA immunoprecipitation and pathways by qPCR and Western blotting. TP significantly inhibited tumor cell proliferation and migration and promoted apoptosis in vitro. Continuous administration of TP to tumor mice can significantly suppress tumor tissue size. We verified that TP can affect the thermal stability of HnRNP A2/B1 and exert anti-tumor effects by inhibiting HnRNP A2/B1-PI3K-AKT pathway. Adding siRNA to silence HnRNP A2/B1 also significantly down-regulated expression of AKT and PI3K. CONCLUSION: The X-TPP method was used to show that TP regulates tumor cell activity through its potential interaction with HnRNP A2/B1.


Assuntos
Neoplasias Pulmonares , Proteoma , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Inteligência Artificial , Neoplasias Pulmonares/patologia
18.
Pharmaceutics ; 15(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36839725

RESUMO

The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 µg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 µg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 µg/mL), more than Bac10307 alone (IC50 = 139.82 µg/mL against DPPH and 158.20 µg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.

19.
J Agric Food Chem ; 71(32): 12325-12332, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534830

RESUMO

Novel agents contain the structure of phthalimide, which has antibacterial, insecticidal, and herbicidal activities. Recently, studies reported that these compounds can bind to plant hormone receptors and play important regulatory roles. In this study, the functions of agents were studied with in vitro and in vivo assays. The abscisic acid (ABA) receptor pyrabactin resistant-like 2 (PYL2) protein in Arabidopsis thaliana was expressed, purified, and crystallized; the analysis results of the crystal structure showed three AtPYL2 subunits in each asymmetric unit. The affinity of compounds Z1-Z11 to the AtPYL2 protein was tested by microscale thermophoresis (MST) and then verified by isothermal titration calorimetry (ITC). Furthermore, the binding pockets were found using molecular docking to verify the target relationships. Relevant in vivo assays for seed germination and a root growth assay were conducted, with the plant samples being treated with target compounds. The results show that the compounds Z3, Z5, and Z10 target AtPYL2 and that the dissociation constants for binding by MST were 3.59, 3.54, and 3.97 µmol/L, respectively, among them, and the molecular docking results showed that compounds Z3, Z5, and Z10 formed hydrophobic interactions with amino acid residues through hydrogen or halogen bonding. This highlights their potential as an ABA receptor protein agonist. On the other hand, in vivo, compounds Z3, Z5, and Z10 had different inhibitory effects on seed germination, with compound Z5 inhibiting the root growth of A. thaliana and compound Z10 affecting root growth. In conclusion, these compounds could regulate plant growth and could be further developed as new plant-regulating agents.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Ftalimidas/farmacologia , Regulação da Expressão Gênica de Plantas , Germinação , Sementes/metabolismo
20.
J Hazard Mater ; 447: 130830, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682248

RESUMO

4-n-nonylphenol (4-n-NP), a typical endocrine disrupting chemical, has been so far frequently detected in various environmental mediums and editable food. However, the specific metabolic pathways in human and potential adverse effects of metabolites have not been elucidated yet. Here, metabolic profiling of 4-n-NP in human liver microsome (HLM) was comprehensively characterized by integrated approaches of testing and assessment. A total of 21 metabolites were identified using nontarget analysis with high-resolution mass spectrum, including three groups of unique phase I metabolites first determined in HLM. Seven various metabolic pathways of 4-n-NP were identified by both in silico and in vitro, and CYP1A2, 2C19, and 2D6 were the mainly participating enzymes. Two secondary metabolites with carbonyl groups on side chains (M4, M7) presented most abundant in HLM, which were also predicted to have high binding affinities towards HPG-axis-related receptors (AR, ER, and PR). ESRs (estrogen receptors) were shared core protein targets for all metabolites revealed by protein-protein interaction networks. Biological functions enrichment analysis indicated that 4-n-NP metabolites might primarily involve in ESR-mediated signaling, GPCR ligand binding, Class A/1 (Rhodopsin-like receptors) and metabolism-related pathways. These findings of 4-n-NP metabolites, pathways, and biological effects provide insightful information for its environmental exposure and risk assessment.


Assuntos
Microssomos Hepáticos , Receptores Acoplados a Proteínas G , Humanos , Microssomos Hepáticos/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Fenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA