Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Plant J ; 114(4): 951-964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919360

RESUMO

Red coloration around the stone (Cs) is an important trait of canned peaches (Prunus persica). In this study, an elongated hypocotyl 5 gene in peach termed PpHY5 was identified to participate in the regulation of the Cs trait. The E3 ubiquitin ligase PpCOP1 was expressed in the flesh around the stone and could interact with PpHY5. Although HY5 is known to be degraded by COP1 in darkness, the PpHY5 gene was activated in the flesh tissue surrounding the stone at the ripening stages and its expression was consistent with anthocyanin accumulation. PpHY5 was able to promote the transcription of PpMYB10.1 through interacting with its partner PpBBX10. Silencing of PpHY5 in the flesh around the stone caused a reduction in anthocyanin pigmentation, while transient overexpression of PpHY5 and PpBBX10 resulted in anthocyanin accumulation in peach fruits. Moreover, transgenic Arabidopsis seedlings overexpressing PpHY5 showed increased anthocyanin accumulation in leaves. Our results improve our understanding of the mechanisms of anthocyanin coloration in plants.


Assuntos
Arabidopsis , Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Frutas/genética , Frutas/metabolismo
2.
New Phytol ; 241(2): 632-649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933224

RESUMO

Although maturity date (MD) is an essential factor affecting fresh fruit marketing and has a pleiotropic effect on fruit taste qualities, the underlying mechanisms remain largely unclear. In this study, we functionally characterized two adjacent NAM-ATAF1/2-CUC2 (NAC) transcription factors (TFs), PpNAC1 and PpNAC5, both of which were associated with fruit MD in peach. PpNAC1 and PpNAC5 were found capable of activating transcription of genes associated with cell elongation, cell wall degradation and ethylene biosynthesis, suggesting their regulatory roles in fruit enlargement and ripening. Furthermore, PpNAC1 and PpNAC5 had pleiotropic effects on fruit taste due to their ability to activate transcription of genes for sugar accumulation and organic acid degradation. Interestingly, both PpNAC1 and PpNAC5 orthologues were found in fruit-producing angiosperms and adjacently arranged in all 91 tested dicots but absent in fruitless gymnosperms, suggesting their important roles in fruit development. Our results provide insight into the regulatory roles of NAC TFs in MD and fruit taste.


Assuntos
Prunus persica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus persica/genética , Frutas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872462

RESUMO

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Plantas , Prunus persica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sequência de Bases , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas
4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203777

RESUMO

The brown marmorated stink bug (BMSB; Halyomorpha halys Stål.) is a highly destructive and polyphagous invasive pest that poses a serious threat to more than a hundred reported host plants. In the current study, the metabolic response of peach fruit of two cultivars-'Maria Marta' and 'Redhaven'-to BMSB infestation was studied using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). In general, a strong phenolic response to BMSB infestation in peach flesh in the injury zone was observed, with flavanol content increasing by 2.4-fold, hydroxycinnamic acid content by 5.0-fold, flavonol content by 3.2-fold, flavanone content by 11.3-fold, and dihydrochalcones content by 3.2-fold compared with the undamaged tissue in the cultivar 'Maria Marta'. The phenolic response in the 'Redhaven' cultivar was even stronger. Consequently, the total phenolic content in the injured flesh also increased, 3.3-fold in 'Maria Marta' and 6.9-fold in 'Redhaven', compared with the uninjured flesh. Infestation with BMSB induced the synthesis of cyanidin-3-glucoside, which is not normally present in peach flesh. In comparison, the phenolic response was lower in peach peel, especially in the cultivar 'Maria Marta'. The study showed that both peach cultivars reacted to BMSB infestation with an increase in phenolic content in the peach flesh, but in a limited area of injury.


Assuntos
Heterópteros , Prunus persica , Animais , Frutas , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos , Fenóis
5.
J Integr Plant Biol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185667

RESUMO

WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.

6.
Plant J ; 109(6): 1614-1629, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905278

RESUMO

Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.


Assuntos
Malus , Prunus persica , Rosaceae , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Prunus persica/genética , Rosaceae/genética , Transcriptoma/genética
7.
New Phytol ; 239(5): 1819-1833, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37292030

RESUMO

Strigol is the first identified and one of the most important strigolactones (SLs), but the biosynthetic pathway remains elusive. We functionally identified a strigol synthase (cytochrome P450 711A enzyme) in the Prunus genus through rapid gene screening in a set of SL-producing microbial consortia, and confirmed its unique catalytic activity (catalyzing multistep oxidation) through substrate feeding experiments and mutant analysis. We also reconstructed the biosynthetic pathway of strigol in Nicotiana benthamiana and reported the total biosynthesis of strigol in the Escherichia coli-yeast consortium, from the simple sugar xylose, which paves the way for large-scale production of strigol. As proof of concept, strigol and orobanchol were detected in Prunus persica root extrudes. This demonstrated a successful prediction of metabolites produced in plants through gene function identification, highlighting the importance of deciphering the sequence-function correlation of plant biosynthetic enzymes to more accurately predicate plant metabolites without metabolic analysis. This finding revealed the evolutionary and functional diversity of CYP711A (MAX1) in SL biosynthesis, which can synthesize different stereo-configurations of SLs (strigol- or orobanchol-type). This work again emphasizes the importance of microbial bioproduction platform as an efficient and handy tool to functionally identify plant metabolism.


Assuntos
Reguladores de Crescimento de Plantas , Prunus , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Lactonas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Plant Dis ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36825313

RESUMO

Peach (Prunus persica) is an important economic tree fruit in China, with 15 million tons produced in 2020 (Xu et al. 2022). In September 2021, fruit rot on postharvest P. persica 'Yingqingtao' was observed in an orchard warehouse in Qixing district (120°41'E, 29°15'N), Zhejiang Province. Disease incidence was estimated at 25%, and yield loss was estimated at approximately 20% of the total yield. The naturally infected fruit had water-soaked, light brown lesions that fused, and produced a gray-white, dense mycelium (Fig. 1 A). The mycelia were transferred using a sterilized toothpick to potato dextrose agar (PDA) and cultured for 7 d. Macroconidia were used to produce five single-spore isolates, each from a different fruit. Six-day-old colonies grown on PDA at 26°C had light brown centers with gray-white edges; on the underside the centers were reddish brown and white towards the margin (Fig. 1 D). Isolate TGF2 was selected for further identification. Macroconidia were hyaline, straight, cylindrical, and one-to-three septae, 63.2 to 81.8 × 5.7 to 7.8 µm (mean = 73.9 ± 4.3 × 6.9 ± 0.5, n = 30) (Fig. 1 E). Chlamydospores were produced abundantly on PDA (Fig. 1 F), and measured 11.7 to 19.4 × 8.5 to 16.9 µm (n = 10). Perithecia were reddish orange, globose, and 329.9 to 417.1 µm in diameter on PDA (Fig. 1 G). Asci were hyaline and clavate, 61.2 to 91.8 × 14.4 to 20.7 µm (n = 10); ascospores were hyaline, slightly curved, 1- to 3-septate, mostly 1-septate, and 37.6 to 59.7 × 4.9 to 6.4 µm (mean = 49.9 ± 4.5 × 5.6 ± 0.4, n = 30) (Fig. 1 H-J). Morphological characteristics placed this organism within the Ca. kyotensis species complex (Liu et al. 2020). For molecular identification, the internal transcribed spacer (ITS: OP164807-OP164811), calmodulin (Cal: OP176049-OP176053), histone3 (His3: OP176054-OP176058), and translation elongation factor 1α (Tef1: OP176044-OP176048) genes were sequenced (Liu, et al., 2020). The twenty sequences were deposited in GenBank. A BLAST search of these sequences showed 99% identity with sequences of the ex-holotype Ca. ilicicola CMW 30998 (Liu et al. 2020). Bayes phylogenesis suggested that these strains and Ca. ilicicola CMW 30998 were clustered in the same clade (Bayesian posterior probability = 1) (Fig. 2). Integrating morphology and molecular data, these strains were identified as Ca. ilicicola. For pathogenicity tests, P. persica fruits were surface sterilized in 75% ethanol for 30 s and air-dried for 5 mins to allow the alcohol to volatilize. A conidial suspension (30 mL of 1 × 106 conidia/mL) of TGF2 was sprayed onto ten fruits, and ten fruits sprayed with sterilized water served as controls. The experiment was repeated three times. Fruits were kept on a mist bench at 26°C and 60% relative humidity. After 5 days, inoculated fruits showed necrotic lesions and a dense, gray-white mycelium, however, the control fruits showed no symptoms (Fig. 1 B, C). Ca. ilicicola was reisolated from lesions of inoculated fruits. Ca. ilicicola has been reported from Vaccinium sp., Glycine max, Medicago sativa (Farr and Rossman 2022; Kleczewski et al. 2019; Zhang et al. 2020). To our knowledge, this is the first report of Ca. ilicicola causing fruit rot of P. persica in China. In other research on Ca. ilicicola, we found that continuous light could inhibit its growth, suggesting a method to protect postharvest peaches.

9.
Plant Dis ; 107(7): 2205-2208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36947835

RESUMO

Botryosphaeria dothidea is a worldwide pathogenic fungus that causes stem canker, leaf dieback, and fruit rot on a large number of crops and trees. Gummosis caused by B. dothidea is one of the most prevalent and devastating diseases on peach in southern China. This study reported a high-quality and well-annotated genome sequence of B. dothidea strain XNHG241. The findings can be used as a reference for studying fungal biology, pathogenic mechanism of B. dothidea, and the interaction between B. dothidea and host, and eventually facilitate peach gummosis management.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Ascomicetos/genética , China
10.
Plant Dis ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261879

RESUMO

Peach (Prunus persica) is an important stone fruit crop in Chile, with 7,665 h in 2022. Trunk diseases symptoms, including shoot dieback, longitudinal cankers and internal dark-brown to purple discolorations in cross sections were observed in a commercial orchard, in March of 2021. In severe cases, mostly in old trees, periderm sections were detached from the cankers, showing circinate groups of black long necked perithecia. To isolate the causal agent, wood samples were collected from March 2021 to October 2022, from symptomatic trees (n=23) of commercial orchards (n=12) (34°12'36.47"S 70°46'3.43"O to 34°34'26.48"S 70°58'17.97"O), located in O'Higgins Region, in the center of Chile. Isolations were performed cutting wood sections (0.5 cm) from the necrosis progress area, disinfecting them in sodium hypochlorite (10%), plating on a quarter-strength potato dextrose agar amended with 1 mg/L tetracycline (aPDA-tet) and incubating at 25°C, until mycelial development. Cultures were purified on PDA and identified by morphological means. Colonies on PDA were dark-pink and purple to orange-red, with regular margins, usually white, and produced abundant hyaline ellipsoidal to allantoid conidia (3.8-5.7 × 1.3 µm). In some cases, perithecia developed on disinfected wood on culture media, showing clavate unitunicate asci with hyaline allantoid ascospores 4.5-6.2 × 0.7 µm. The morphological characteristics of anamorph and teleomorph structures of field and culture isolates accorded to those described for Calosphaeria pulchella (1,2). DNA from representative isolates was extracted and the ITS region was amplified by PCR using ITS1/ITS4 primers (3), sequenced and BLAST analyzed. BLAST results revealed that ITS sequences identity of the representative isolates HMDu263 and HMDu271, shared 99 and 100% similarity, respectively, when compared to isolate CBS115999 (EU367451) (1,2,4). Sequences were accessioned to GenBank (OP216663 and OP216664 [ITS]). To determine the pathogenicity of C. pulchella, 17 representative isolates were inoculated on peach canes (25 cm) (n=7 per isolate), that were previously rooted on tap water amended with 500 ppm of indole-butyric acid, for 30 d. Mycelial plugs (0.5 cm) from actively growing colonies on PDA were placed on circular injuries made in the upper third of the shoots using a sterile corkborer and covered with plastic film. Sterile agar was used for controls. After 60 d of incubation in aerated tap water, at 23 +/-3 °C, bark was removed, and the necrosis length was measured and compared. Mean length values of lesions went from 9.5 to 27 cm. The most virulent isolates (n=7) were inoculated on fresh cuts of main shoots of nursery plants (n=3 per isolate) cv. Royal Glory, with 200 µL conidial suspensions (1x105 conidia/mL), on March 18th, 2022. Plants were incubated at shadehouse for 102 d and after the incubation period, shoots were cut (30 cm), bark was removed, and discoloration length was measured. All the isolates were pathogenic, with differences among their virulence (ANOVA, LSD, P < 0.05) from 5.2 cm (HMDu246) to 24.3 cm (HMDu266). Fungus was successfully reisolated from symptomatic canes (100%) and trees (98.7%), but not from the controls in both pathogenicity tests, fulfilling Koch's postulates. Calosphaeria pulchella was recently reported causing trunk disease in sweet cherry in Chile (4) and these results contribute to the knowledge of trunk diseases of fruit crops in Chile and to the understanding of the pathogen worldwide.

11.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762013

RESUMO

Plant cell cultures have emerged as a promising tool for producing active molecules due to their numerous advantages over traditional agricultural methods. Flavonols, and anthocyanin pigments in particular, together with other phenolic compounds such as chlorogenic acid, are known for their beneficial health properties, mainly due to their antioxidant, antimicrobial, and anti-inflammatory activities. The synthesis of these molecules is finely regulated in plant cells and controlled at the transcriptional level by specific MYB and bHLH transcription factors that coordinate the transcription of structural biosynthetic genes. The co-expression of peach PpMYB10.1 and PpbHLH3 in tobacco was used to develop tobacco cell lines showing high expression of both the peach transgenes and the native flavonol structural genes. These cell lines were further selected for fast growth. High production levels of chlorogenic acid, anthocyanins (mainly cyanidin 3-rutinoside), and other phenolics were also achieved in pre-industrial scale-up trials. A single-column-based purification protocol was developed to produce a lyophile called ANT-CA, which was stable over time, showed beneficial effects on cell viability, and had antioxidant, anti-inflammatory, antibacterial, and wound-healing activities. This lyophile could be a valuable ingredient for food or cosmetic applications.


Assuntos
Antocianinas , Nicotiana , Nicotiana/genética , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Células Vegetais , Flavonóis
12.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047773

RESUMO

Controlling the tree size of fruit species such as peach can reduce the amount of labor and input needed for orchard management. The phytohormone gibberellin (GA) positively regulates tree size by inducing degradation of the GA signaling repressor DELLA. The N-terminal DELLA domain in this protein is critical for its GA-dependent interaction with the GA receptor GID1 and the resulting degradation of the DELLA protein, which allows for growth-promoting GA signaling. In this study, a DELLA family member, PpeDGYLA, contains a DELLA domain but has amino acid changes in three conserved motifs (DELLA into DGYLA, LEQLE into LERLE, and TVHYNP into AVLYNP). In the absence or presence of GA3, the PpeDGYLA protein did not interact with PpeGID1c and was stable in 35S-PpeDGYLA peach transgenic callus. The overexpression of PpeDGYLA in both polar and Arabidopsis showed an extremely dwarfed phenotype, and these transgenic plants were insensitive to GA3 treatment. PpeDGYLA could interact with PpeARF6-1 and -2, supposed growth-promoting factors. It is suggested that the changes in the DELLA domain of PpeDGYLA may, to some extent, account for the severe dwarf phenotype of poplar and Arabidopsis transgenic plants. In addition, our study showed that the DELLA family contained three clades (DELLA-like, DELLA, and DGLLA). PpeDGYLA clustered into the DGLLA clade and was expressed in all of the analyzed tissues. These results lay the foundation for the further study of the repression of tree size by PpeDGYLA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nanismo , Prunus persica , Arabidopsis/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768256

RESUMO

The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their role in anthocyanin transport remains elusive. In this study, we identified a total of 132 putative ABC genes in the peach genome, and they were phylogenetically classified into eight subfamilies. Variations in spatial and temporal gene expression levels resulted in differential expression patterns of PpABC family members in various tissues of peach. PpABCC1 was identified as the most likely candidate gene essential for anthocyanin accumulation in peach. Transient overexpression of PpABCC1 caused a significant increase in anthocyanin accumulation in tobacco leaves and peach fruit, whereas virus-induced gene silencing of PpABCC1 in the blood-fleshed peach resulted in a significant decrease in anthocyanin accumulation. The PpABCC1 promoter contained an MYB binding cis-element, and it could be activated by anthocyanin-activator PpMYB10.1 based on yeast one-hybrid and dual luciferase assays. Thus, it seems that PpABCC1 plays a crucial role in anthocyanin accumulation in peach. Our results provide a new insight into the vacuolar transport of anthocyanins in peach.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo
14.
J Sci Food Agric ; 103(2): 917-923, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067353

RESUMO

BACKGROUND: The kinetic parameters of peach rootstock are a major factor contributing to its nitrogen (N) uptake efficiency, which directly affects the yield and quality parameters. However, the impact of grafting on N kinetic parameters is not sufficiently known as rootstocks are grafted with other scion cultivars before being transplanted to the field. The objective of this study was therefore to evaluate whether the grafting of 'Okinawa' rootstock with the scion cultivar 'Chimarrita' can alter the kinetic parameters related to N uptake. RESULTS: The plants were acclimatized in Hoagland solution for 21 days and, sequentially, were tested to assess the depletion of the internal reserves at 15 and 30 days in CaSO4 solution. Morphological and physiological parameters were evaluated, and kinetic parameters were calculated. The depletion period for to reach the minimum concentration (Cmin ) of NO3 - and NH4 + in the plant was 62 h and 56 h, respectively. The optimal time for internal reserve depletion for 'Okinawa' rootstock with and without the 'Chimarrita' scion was 30 days. CONCLUSION: 'Okinawa' rootstock grafted with 'Chimarrita' scion cultivar was more efficient in NO3 - and NH4 + uptake. © 2022 Society of Chemical Industry.


Assuntos
Prunus persica , Nitrogênio , Raízes de Plantas/fisiologia
15.
Plant J ; 108(1): 281-295, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309935

RESUMO

Peach (Prunus persica L. Batsch) is an economically important fruit crop worldwide. Although a high-quality peach genome has previously been published, Sanger sequencing was used for its assembly, which generated short contigs. Here, we report a chromosome-level genome assembly and sequence analysis of Chinese Cling, an important founder cultivar for peach breeding programs worldwide. The assembled genome contained 247.33 Mb with a contig N50 of 4.13 Mb and a scaffold N50 of 29.68 Mb, representing 99.8% of the estimated genome. Comparisons between this genome and the recently published one (Lovell peach) uncovered 685 407 single nucleotide polymorphisms, 162 655 insertions and deletions, and 16 248 structural variants. Gene family analysis highlighted the contraction of the gene families involved in flavone, flavonol, flavonoid, and monoterpenoid biosynthesis. Subsequently, the volatile compounds of 256 peach varieties were quantitated in mature fruits in 2015 and 2016 to perform a genome-wide association analysis. A comparison with the identified domestication genomic regions allowed us to identify 25 quantitative trait loci, associated with seven volatile compounds, in the domestication region, which is consistent with the differences in volatile compounds between wild and cultivated peaches. Finally, a gene encoding terpene synthase, located within a previously reported quantitative trait loci region, was identified to be associated with linalool synthesis. Such findings highlight the importance of this new assembly for the analysis of evolutionary mechanisms and gene identification in peach species. Furthermore, this high-quality peach genome provides valuable information for future fruit improvement.


Assuntos
Genoma de Planta/genética , Prunus persica/genética , Locos de Características Quantitativas/genética , Domesticação , Evolução Molecular , Frutas/química , Frutas/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Prunus persica/química , Compostos Orgânicos Voláteis/análise
16.
Plant J ; 105(1): 62-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095963

RESUMO

Fruits are complex organs that are spatially regulated during development. Limited phenotyping capacity at cell and tissue levels is one of the main obstacles to our understanding of the coordinated regulation of the processes involved in fruit growth and quality. In this study, the spatial evolution of biophysical and metabolic traits of peach and apple fruit was investigated during fruit development. In parallel, the multi-exponential relaxation times and apparent microporosity were assessed by quantitative magnetic resonance imaging (MRI). The aim was to identify the possible relationships between MRI parameters and variations in the structure and composition of fruit tissues during development so that transverse relaxation could be proposed as a biomarker for the assessment of the structural and functional evolution of fruit tissues during growth. The study provides species-specific data on developmental and spatial variations in density, cell number and size distribution, insoluble and soluble compound accumulation and osmotic and water potential in the fruit mesocarp. Magnetic resonance imaging was able to capture tissue evolution and the development of pericarp heterogeneity by accessing information on cell expansion, water status and distribution at cell level, and microporosity. Changes in vacuole-related transverse relaxation rates were mostly explained by cell/vacuole size. The impact of cell solute composition, microporosity and membrane permeability on relaxation times is also discussed. The results demonstrate the usefulness of MRI as a tool to phenotype fruits and to access important physiological data during development, including information on spatial variability.


Assuntos
Frutas/anatomia & histologia , Malus/anatomia & histologia , Prunus persica/anatomia & histologia , Frutas/metabolismo , Frutas/fisiologia , Imageamento por Ressonância Magnética , Malus/metabolismo , Malus/fisiologia , Prunus persica/metabolismo , Prunus persica/fisiologia
17.
BMC Genomics ; 23(1): 730, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307759

RESUMO

BACKGROUND: The rapid growth of annual shoots is detrimental to peach production. While gibberellin (GA) promotes the rapid growth of peach shoots, there is limited information on the identity and expression profiles of GA-metabolism genes for this species. RESULTS: All six GA biosynthetic gene families were identified in the peach genome, and the expression profiles of these family members were determined in peach shoots. The upstream biosynthetic gene families have only one or two members (1 CPS, 2 KSs, and 1 KO), while the downstream gene families have multiple members (7 KAOs, 6 GA20oxs, and 5 GA3oxs). Between the two KS genes, PpKS1 showed a relatively high transcript level in shoots, while PpKS2 was undetectable. Among the seven KAO genes, PpKAO2 was highly expressed in shoots, while PpKAO1 and - 6 were weakly expressed. For the six GA20ox genes, both PpGA20ox1 and - 2 were expressed in shoots, but PpGA20ox1 levels were higher than PpGA20ox2. For the five GA3ox genes, only PpGA3ox1 was highly expressed in shoots. Among these biosynthesis genes, PpGA20ox1 and PpGA3ox1 showed a gradual decrease in transcript level along shoots from top to bottom, and a similar trend was observed in bioactive GA1 and GA4 distribution. Among the GA-deactivation genes, PpGA2ox6 was highly expressed in peach shoots. PpGA2ox1 and - 5 transcripts were relatively lower and showed a similar pattern to PpGA20ox1 and PpGA3ox1 in peach shoots. Overexpression of PpGA20ox1, - 2, or PpGA2ox6 in Arabidopsis or tobacco promoted or depressed the plant growth, respectively, while PpGA3ox1 did not affect plant height. Transient expression of PpGA20ox1 in peach leaves significantly increased bioactive GA1 content. CONCLUSIONS: Our results suggest that PpGA20ox and PpGA2ox expression are closely associated with the distribution of active GA1 and GA4 in peach annual shoots. Our research lays a foundation for future studies into ways to effectively repress the rapid growth of peach shoot.


Assuntos
Arabidopsis , Prunus persica , Giberelinas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética
18.
Plant Cell Physiol ; 63(5): 658-670, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35243499

RESUMO

Sugar alcohols are major photosynthetic products in plant species from the Apiaceae and Plantaginaceae families. Mannose-6-phosphate reductase (Man6PRase) and aldose-6-phosphate reductase (Ald6PRase) are key enzymes for synthesizing mannitol and glucitol in celery (Apium graveolens) and peach (Prunus persica), respectively. In this work, we report the first crystal structures of dimeric plant aldo/keto reductases (AKRs), celery Man6PRase (solved in the presence of mannonic acid and NADP+) and peach Ald6PRase (obtained in the apo form). Both structures displayed the typical TIM barrel folding commonly observed in proteins from the AKR superfamily. Analysis of the Man6PRase holo form showed that residues putatively involved in the catalytic mechanism are located close to the nicotinamide ring of NADP+, where the hydride transfer to the sugar phosphate should take place. Additionally, we found that Lys48 is important for the binding of the sugar phosphate. Interestingly, the Man6PRase K48A mutant had a lower catalytic efficiency with mannose-6-phosphate but a higher catalytic efficiency with mannose than the wild type. Overall, our work sheds light on the structure-function relationships of important enzymes to synthesize sugar alcohols in plants.


Assuntos
Fosfatos , Álcoois Açúcares , Oxirredutases do Álcool/metabolismo , Aldeído Redutase/metabolismo , Sequência de Aminoácidos , Humanos , Manosefosfatos , NADP/metabolismo , Plantas/metabolismo , Açúcares
19.
BMC Plant Biol ; 22(1): 318, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35786350

RESUMO

BACKGROUND: With the domestication of ornamental plants, artificial selective pressure favored the propagation of mutations affecting flower shape, and double-flower varieties are now readily available for many species. In peach two distinct loci control the double-flower phenotype: the dominant Di2 locus, regulated by the deletion of the binding site for miR172 in the euAP2 PETALOSA gene Prupe.6G242400, and the recessive di locus, of which the underlying factor is still unknown. RESULTS: Based on its genomic location a candidate gene approach was used to identify genetic variants in a diverse panel of ornamental peach accessions and uncovered three independent mutations in Prupe.2G237700, the gene encoding the transcript for microRNA miR172d: a ~5.0 Kb LTR transposable element and a ~1.2 Kb insertion both positioned upstream of the sequence encoding the pre-miR172d within the transcribed region of Prupe.2G237700, and a ~9.5 Kb deletion encompassing the whole gene sequence. qRT-PCR analysis confirmed that expression of pre-miR172d was abolished in di/di genotypes homozygous for the three variants. CONCLUSIONS: Collectively, PETALOSA and the mutations in micro-RNA miR172d identified in this work provide a comprehensive collection of the genetic determinants at the base of the double-flower trait in the peach germplasms.


Assuntos
Prunus persica , Flores/genética , Genes de Plantas/genética , Genótipo , Fenótipo , Prunus persica/genética
20.
Plant Biotechnol J ; 20(5): 886-902, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34919780

RESUMO

Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.


Assuntos
Aquaporinas , Prunus persica , Aquaporinas/genética , Cromossomos , Flores/genética , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Prunus persica/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA