Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456494

RESUMO

Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.


Assuntos
Diferenciação Celular , Proteínas Correpressoras , Fatores de Transcrição Forkhead , Células de Purkinje , Peixe-Zebra , Animais , Diferenciação Celular/genética , Cerebelo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mamíferos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Dev Biol ; 504: 113-119, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739117

RESUMO

Beclin1 (Becn1) is a multifunctional protein involved in autophagy regulation, membrane trafficking, and tumor suppression. In this study, we examined the roles of Becn1 in the pancreas development by generating mice with conditional deletion of Becn1 in the pancreas using pancreatic transcriptional factor 1a (Ptf1a)-Cre mice (Becn1f/f; Ptf1aCre/+). Surprisingly, loss of Becn1 in the pancreas resulted in severe pancreatic developmental defects, leading to insufficient exocrine and endocrine pancreatic function. Approximately half of Becn1f/f; Ptf1aCre/+ mice died immediately after birth. However, duodenum and neural tissue development were almost normal, indicating that pancreatic insufficiency was the cause of death. These findings demonstrated a novel role for Becn1 in pancreas morphogenesis, differentiation, and growth, and suggested that loss of this factor leaded to pancreatic agenesis at birth.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pâncreas , Animais , Camundongos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Duodeno/metabolismo , Pâncreas/metabolismo , Fatores de Transcrição/metabolismo
3.
Development ; 147(19)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32928905

RESUMO

Neurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants, and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are regulated independently of each other and have distinct roles. The fibroblast growth factors (Fgf) 3 and 8a, and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and Hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Development ; 146(13)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31160417

RESUMO

The Cre/loxP system has been used extensively in mouse models with a limitation of one lineage at a time. Differences in function and other properties among populations of adult ß-cells is termed ß-cell heterogeneity, which was recently associated with diabetic phenotypes. Nevertheless, the presence of a developmentally derived ß-cell heterogeneity is unclear. Here, we have developed a novel dual lineage-tracing technology, using a combination of two recombinase systems, Dre/RoxP and Cre/LoxP, to independently trace green fluorescent Pdx1-lineage cells and red fluorescent Ptf1a-lineage cells in the developing and adult mouse pancreas. We detected a few Pdx1+/Ptf1a- lineage cells in addition to the vast majority of Pdx1+/Ptf1a+ lineage cells in the pancreas. Moreover, Pdx1+/Ptf1a+ lineage ß-cells had fewer Ki-67+ proliferating ß-cells, and expressed higher mRNA levels of insulin, Glut2, Pdx1, MafA and Nkx6.1, but lower CCND1 and CDK4 levels, compared with Pdx1+/Ptf1a- lineage ß-cells. Furthermore, more TSQ-high, SSC-high cells were detected in the Pdx1+Ptf1a+ lineage population than in the Pdx1+Ptf1a- lineage population. Together, these data suggest that differential activation of Ptf1a in the developing pancreas may correlate with this ß-cell heterogeneity.


Assuntos
Linhagem da Célula , Rastreamento de Células/métodos , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Separação Celular/métodos , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Molecular/métodos , Organogênese/genética , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Células-Tronco/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Dev Biol ; 418(1): 216-225, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27350561

RESUMO

Generating the correct balance of inhibitory and excitatory neurons in a neural network is essential for normal functioning of a nervous system. The neural network in the dorsal spinal cord functions in somatosensation where it modulates and relays sensory information from the periphery. PTF1A is a key transcriptional regulator present in a specific subset of neural progenitor cells in the dorsal spinal cord, cerebellum and retina that functions to specify an inhibitory neuronal fate while suppressing excitatory neuronal fates. Thus, the regulation of Ptf1a expression is critical for determining mechanisms controlling neuronal diversity in these regions of the nervous system. Here we identify a sequence conserved, tissue-specific enhancer located 10.8kb 3' of the Ptf1a coding region that is sufficient to direct expression to dorsal neural tube progenitors that give rise to neurons in the dorsal spinal cord in chick and mouse. DNA binding motifs for Paired homeodomain (Pd-HD) and zinc finger (ZF) transcription factors are required for enhancer activity. Mutations in these sequences implicate the Pd-HD motif for activator function and the ZF motif for repressor function. Although no repressor transcription factor was identified, both PAX6 and SOX3 can increase enhancer activity in reporter assays. Thus, Ptf1a is regulated by active and repressive inputs integrated through multiple sequence elements within a highly conserved sequence downstream of the Ptf1a gene.


Assuntos
Cerebelo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Embrião de Galinha , Eletroporação , Camundongos , Camundongos Transgênicos , Tubo Neural/metabolismo , Fator de Transcrição PAX6/metabolismo , Retina/embriologia , Fatores de Transcrição SOXB1/metabolismo , Medula Espinal/embriologia , Células-Tronco/citologia , Ativação Transcricional/genética , Dedos de Zinco/genética
6.
Development ; 141(22): 4385-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371369

RESUMO

The timing and gene regulatory logic of organ-fate commitment from within the posterior foregut of the mammalian endoderm is largely unexplored. Transient misexpression of a presumed pancreatic-commitment transcription factor, Ptf1a, in embryonic mouse endoderm (Ptf1a(EDD)) dramatically expanded the pancreatic gene regulatory network within the foregut. Ptf1a(EDD) temporarily suppressed Sox2 broadly over the anterior endoderm. Pancreas-proximal organ territories underwent full tissue conversion. Early-stage Ptf1a(EDD) rapidly expanded the endogenous endodermal Pdx1-positive domain and recruited other pancreas-fate-instructive genes, thereby spatially enlarging the potential for pancreatic multipotency. Early Ptf1a(EDD) converted essentially the entire glandular stomach, rostral duodenum and extrahepatic biliary system to pancreas, with formation of many endocrine cell clusters of the type found in normal islets of Langerhans. Sliding the Ptf1a(EDD) expression window through embryogenesis revealed differential temporal competencies for stomach-pancreas respecification. The response to later-stage Ptf1a(EDD) changed radically towards unipotent, acinar-restricted conversion. We provide strong evidence, beyond previous Ptf1a inactivation or misexpression experiments in frog embryos, for spatiotemporally context-dependent activity of Ptf1a as a potent gain-of-function trigger of pro-pancreatic commitment.


Assuntos
Endoderma/embriologia , Trato Gastrointestinal/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organogênese/fisiologia , Pâncreas/embriologia , Fatores de Transcrição/metabolismo , Animais , Endoderma/metabolismo , Imunofluorescência , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Técnicas Histológicas , Camundongos , Microscopia Confocal , Organogênese/genética , Fatores de Transcrição SOXB1/metabolismo
7.
Development ; 141(21): 4031-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25336734

RESUMO

The cerebellum is a pre-eminent model for the study of neurogenesis and circuit assembly. Increasing interest in the cerebellum as a participant in higher cognitive processes and as a locus for a range of disorders and diseases make this simple yet elusive structure an important model in a number of fields. In recent years, our understanding of some of the more familiar aspects of cerebellar growth, such as its territorial allocation and the origin of its various cell types, has undergone major recalibration. Furthermore, owing to its stereotyped circuitry across a range of species, insights from a variety of species have contributed to an increasingly rich picture of how this system develops. Here, we review these recent advances and explore three distinct aspects of cerebellar development - allocation of the cerebellar anlage, the significance of transit amplification and the generation of neuronal diversity - each defined by distinct regulatory mechanisms and each with special significance for health and disease.


Assuntos
Encéfalo/embriologia , Cerebelo/embriologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Cerebelo/anatomia & histologia , Cerebelo/citologia , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtornos Globais do Desenvolvimento Infantil/patologia , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Modelos Biológicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Development ; 141(14): 2803-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24924197

RESUMO

The proper balance of excitatory and inhibitory neurons is crucial for normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors (TFs), Ascl1 and Ptf1a, have contrasting functions in specifying these neurons. To understand how Ascl1 and Ptf1a function in this process, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a directly regulate distinct homeodomain TFs that specify excitatory or inhibitory neuronal fates. In addition, Ascl1 directly regulates genes with roles in several steps of the neurogenic program, including Notch signaling, neuronal differentiation, axon guidance and synapse formation. By contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Ascl1 and Ptf1a bind sequences primarily enriched for a specific E-Box motif (CAGCTG) and for secondary motifs used by Sox, Rfx, Pou and homeodomain factors. Ptf1a also binds sequences uniquely enriched in the CAGATG E-box and in the binding motif for its co-factor Rbpj, providing two factors that influence the specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding of how these DNA-binding proteins function in neuronal development, particularly as key regulators of homeodomain TFs required for neuronal subtype specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Redes Reguladoras de Genes , Inibição Neural , Neurônios/metabolismo , Medula Espinal/citologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Padronização Corporal/genética , Galinhas , Cromatina/metabolismo , Elementos E-Box/genética , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Glutamatos/metabolismo , Camundongos , Dados de Sequência Molecular , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Neurogênese/genética , Neurônios/citologia , Motivos de Nucleotídeos/genética , Ligação Proteica , Medula Espinal/embriologia
9.
Endocr J ; 64(5): 477-486, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28420858

RESUMO

A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate ß cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Insulina/metabolismo , Organogênese/genética , Pâncreas/embriologia , Animais , Redes Reguladoras de Genes , Humanos , Pâncreas/metabolismo , Transcrição Gênica
10.
Genesis ; 54(3): 123-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865080

RESUMO

The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development.


Assuntos
Sistema Nervoso Entérico/citologia , Proteínas de Fluorescência Verde/metabolismo , Crista Neural/citologia , Neurônios/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/metabolismo , Proteínas de Fluorescência Verde/genética , Camundongos Transgênicos , Crista Neural/metabolismo , Neurogênese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serotonina/metabolismo , Fatores de Transcrição/metabolismo
11.
J Neurosci ; 35(15): 6028-37, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878276

RESUMO

The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Biologia Computacional , Eletroporação , Embrião de Mamíferos , Proteínas do Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Estatísticas não Paramétricas , Fatores de Transcrição/genética , Tubulina (Proteína)/metabolismo
12.
BMC Evol Biol ; 16(1): 117, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230062

RESUMO

BACKGROUND: Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. RESULTS: We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. CONCLUSIONS: Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems.


Assuntos
Evolução Biológica , Estômago/citologia , Strongylocentrotus purpuratus/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Digestão/genética , Digestão/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Células HEK293 , Células HeLa , Humanos , Larva/citologia , Larva/metabolismo , Pâncreas/citologia , Ratos , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Strongylocentrotus purpuratus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Vertebrados/anatomia & histologia , Vertebrados/metabolismo
13.
Dev Dyn ; 244(6): 724-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773748

RESUMO

BACKGROUND: Pancreas development in zebrafish shares many features with mammals, including the participation of epithelial progenitor cells expressing pancreas transcription factor 1a (ptf1a). However, to date it has remained unclear whether, as in mammals, ptf1a-expressing zebrafish pancreatic progenitors are able to contribute to multiple exocrine and endocrine lineages. To delineate the lineage potential of ptf1a-expressing cells, we generated ptf1a:creER(T2) transgenic fish and performed genetic-inducible lineage tracing in developmental, regenerating, and ptf1a-deficient zebrafish pancreas. RESULTS: In addition to their contribution to the acinar cell lineage, ptf1a-expressing cells give rise to both pancreatic Notch-responsive-cells (PNCs) as well as small numbers of endocrine cells during pancreatic development. In fish with ptf1a haploinsufficiency, a higher proportion of ptf1a lineage-labeled cells are traced into the PNC and endocrine compartments. Further reduction of ptf1a gene dosage converts pancreatic progenitor cells to gall bladder and other non-pancreatic cell fates. CONCLUSIONS: Our results confirm the presence of multipotent ptf1a-expressing progenitor cells in developing zebrafish pancreas, with reduced ptf1a dosage promoting greater contributions towards non-acinar lineages. As in mammals, loss of ptf1a results in conversion of nascent pancreatic progenitor cells to non-pancreatic cell fates, underscoring the central role of ptf1a in foregut tissue specification.


Assuntos
Pâncreas/embriologia , Fatores de Transcrição/fisiologia , Peixe-Zebra/embriologia , Células Acinares/citologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Cromossomos Artificiais Bacterianos , Vesícula Biliar/citologia , Dosagem de Genes , Genótipo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Especificidade de Órgãos , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Pâncreas Exócrino/citologia , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/crescimento & desenvolvimento , Receptores Notch/fisiologia , Recombinação Genética , Regeneração , Células-Tronco/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
14.
Dev Biol ; 386(2): 340-57, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24370451

RESUMO

The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.


Assuntos
Diferenciação Celular/fisiologia , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Tubo Neural/embriologia , Proteínas de Xenopus/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Primers do DNA/genética , Eletroporação , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Camundongos , Tubo Neural/citologia , Fator de Transcrição PAX2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus/genética , Xenopus laevis
15.
Dev Growth Differ ; 57(8): 557-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26435359

RESUMO

To address conserved and unique features of fish pancreas development, we performed extensive analyses of pancreatic development in medaka embryos and adults using pdx1- and ptf1a-transgenic medaka, in situ hybridization and immunohistochemistry. The markers used in these analyses included pdx1, nkx6.1, nkx6.2, nkx2.2, Islet1, insulin, Somatostatin, glucagon, ptf1a, ela3l, trypsin, and amylase. The double transgenic (Tg) fish produced in the present study visualizes the development of endocrine (pdx1+) and exocrine (ptf1a+) parts simultaneously in living fishes. Like other vertebrates, the medaka pancreas develops as two (dorsal and ventral) buds in the anterior gut tube, which soon fuse into a single anlagen. The double Tg fish demonstrates that the differential property between the two buds is already established at the initial phase of bud development as indicated by strong pdx1 expression in the dorsal one. This Tg fish also allowed us to examine the gross morphology and the structure of adult pancreas and revealed unique characters of medaka pancreas such as broad and multiple connections with the gut tube along the anterior-posterior axis.


Assuntos
Oryzias/embriologia , Pâncreas/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Organogênese/genética , Organogênese/fisiologia , Oryzias/metabolismo , Pâncreas/metabolismo , Transativadores/genética , Transativadores/metabolismo
16.
Stem Cells ; 32(5): 1195-207, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375815

RESUMO

Besides its role in exocrine differentiation, pancreas-specific transcription factor 1a (PTF1a) is required for pancreas specification from the foregut endoderm and ultimately for endocrine cell formation. Examining the early role of PTF1a in pancreas development has been challenging due to limiting amounts of embryonic tissue material for study. Embryonic stem cells (ESCs) which can be differentiated in vitro, and without limit to the amount of experimental material, can serve as a model system to study these early developmental events. To this end, we derived and characterized a mouse ESC line with tetracycline-inducible expression of PTF1a (tet-Ptf1a mESCs). We found that transient ectopic expression of PTF1a initiated the pancreatic program in differentiating ESCs causing cells to activate PDX1 expression in bud-like structures resembling pancreatic primordia in vivo. These bud-like structures also expressed progenitor markers characteristic of a developing pancreatic epithelium. The epithelium differentiated to generate a wave of NGN3+ endocrine progenitors, and further formed cells of all three pancreatic lineages. Notably, the insulin+ cells in the cultures were monohormonal, and expressed PDX1 and NKX6.1. PTF1a-induced cultures differentiated into significantly more endocrine and exocrine cells and the ratio of endocrine-to-exocrine cell differentiation could be regulated by retinoic acid (RA) and nicotinamide (Nic) signaling. Moreover, induced cultures treated with RA and Nic exhibited a modest glucose response. Thus, this tet-Ptf1a ESC-based in vitro system is a valuable new tool for interrogating the role of PTF1a in pancreas development and in directing differentiation of ESCs to endocrine cells.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células Endócrinas/metabolismo , Pâncreas/metabolismo , Fatores de Transcrição/genética , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/ultraestrutura , Células Endócrinas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Insulina/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Genéticos , Niacinamida/farmacologia , Organogênese/genética , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
17.
Dev Biol ; 381(2): 471-81, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23876428

RESUMO

Development of the pancreas and cerebellum require Pancreas-specific transcription factor-1a (Ptf1a), which encodes a subunit of the transcription factor complex PTF1. Ptf1a is required in succession for specification of the pancreas, proper allocation of pancreatic progenitors to endocrine and exocrine fates, and the production of digestive enzymes from the exocrine acini. In several neuronal structures, including the cerebellum, hindbrain, retina and spinal cord, Ptf1a is transiently expressed and promotes inhibitory neuron fates at the expense of excitatory fates. Transcription of Ptf1a in mouse is maintained in part by PTF1 acting on an upstream autoregulatory enhancer. However, the transcription factors and enhancers that initially activate Ptf1a expression in the pancreas and in certain structures of the nervous system have not yet been identified. Here we describe a zebrafish autoregulatory element, conserved among teleosts, with activity similar to that described in mouse. In addition, we performed a comprehensive survey of all non-coding sequences in a 67kb interval encompassing zebrafish ptf1a, and identified several neuronal enhancers, and an enhancer active in the ventral pancreas prior to activation of the autoregulatory enhancer. To test the requirement for autoregulatory control during pancreatic development, we restored ptf1a function through BAC transgenesis in ptf1a morphants, either with an intact BAC or one lacking the autoregulatory enhancer. We find that ptf1a autoregulation is required for development of the exocrine pancreas and full rescue of the ptf1a morphant phenotype. Similarly, we demonstrate that a ptf1a locus lacking the early enhancer region is also capable of rescue, but only supports formation of a hypoplastic exocrine pancreas. Through our dissection of the complex regulatory control of ptf1a, we identified separate cis-regulatory elements that underlie different aspects of its expression and function, and further demonstrated the requirement of maintained ptf1a expression for normal pancreatic morphogenesis. We also identified a novel enhancer that mediates initiation of ptf1a expression in the pancreas, through which the signals that specify the ventral pancreas are expected to exert their action.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pâncreas Exócrino/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Cromossomos Artificiais Bacterianos/metabolismo , Sequência Conservada , Embrião não Mamífero/metabolismo , Técnicas de Transferência de Genes , Loci Gênicos , Homeostase , Dados de Sequência Molecular , Pâncreas Exócrino/metabolismo , Fenótipo , Sequências Reguladoras de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
18.
Gastroenterology ; 145(3): 668-78.e3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684747

RESUMO

BACKGROUND & AIMS: Diseases of the exocrine pancreas are often associated with perturbed differentiation of acinar cells. MicroRNAs (miRNAs) regulate pancreas development, yet little is known about their contribution to acinar cell differentiation. We aimed to identify miRNAs that promote and control the maintenance of acinar differentiation. METHODS: We studied mice with pancreas- or acinar-specific inactivation of Dicer (Foxa3-Cre/Dicer(loxP/-) mice), combined (or not) with inactivation of hepatocyte nuclear factor (HNF) 6 (Foxa3-Cre/Dicer(loxP/-)/Hnf6-/- mice). The role of specific miRNAs in acinar differentiation was investigated by transfecting cultured cells with miRNA mimics or inhibitors. Pancreatitis-induced metaplasia was investigated in mice after administration of cerulein. RESULTS: Inhibition of miRNA synthesis in acini by inactivation of Dicer and pancreatitis-induced metaplasia were associated with repression of acinar differentiation and with induction of HNF6 and hepatic genes. The phenotype of Dicer-deficient acini depends on the induction of HNF6; overexpression of this factor in developing acinar cells is sufficient to repress acinar differentiation and to induce hepatic genes. Let-7b and miR-495 repress HNF6 and are expressed in developing acini. Their expression is inhibited in Dicer-deficient acini, as well as in pancreatitis-induced metaplasia. In addition, inhibiting let-7b and miR-495 in acinar cells results in similar effects to those found in Dicer-deficient acini and metaplastic cells, namely induction of HNF6 and hepatic genes and repression of acinar differentiation. CONCLUSIONS: Let-7b, miR-495, and their targets constitute a gene network that is required to establish and maintain pancreatic acinar cell differentiation. Additional studies of this network will increase our understanding of pancreatic diseases.


Assuntos
Células Acinares/citologia , Diferenciação Celular/genética , Fator 6 Nuclear de Hepatócito/metabolismo , MicroRNAs/metabolismo , Pâncreas Exócrino/citologia , Células Acinares/metabolismo , Animais , Biomarcadores/metabolismo , Ceruletídeo , Citometria de Fluxo , Regulação da Expressão Gênica , Imuno-Histoquímica , Metaplasia , Camundongos , Camundongos Knockout , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Reação em Cadeia da Polimerase em Tempo Real
19.
Cureus ; 15(10): e47202, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854477

RESUMO

Background Neonatal diabetes mellitus is a rare form of monogenic diabetes which is diagnosed in the first six months of life. It is often related to genetic mutations; hence, genetic testing is warranted. Here, we present six cases of pancreatic agenesis resulting in neonatal diabetes with PTF1A gene mutation. Methodology This retrospective case series study included six pediatric cases of neonatal diabetes mellitus who are currently following at pediatric endocrinology clinics at King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Results The study reported six patients with a mean age of eight years who presented with pancreatic agenesis resulting in neonatal diabetes with PTF1A gene mutation. In four patients, there was no evidence of cerebellar agenesis. Conclusions Neonatal diabetes is a challenging disease that must be diagnosed early to prevent subsequent metabolic complications. Genetic testing is recommended in neonates who present with prolonged duration of hyperglycemia. Insulin replacement is the treatment of choice.

20.
Neurosci Lett ; 806: 137244, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37055006

RESUMO

Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.


Assuntos
Núcleo Coclear , Orelha Interna , Animais , Camundongos , Núcleo Coclear/metabolismo , Orelha Interna/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA