Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623188

RESUMO

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Assuntos
Ecossistema , Modelos Teóricos , Áreas Alagadas , Sequestro de Carbono , Sulfetos
2.
Proc Natl Acad Sci U S A ; 120(34): e2309374120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590405

RESUMO

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size [Formula: see text] and a propagation velocity [Formula: see text] ([Formula: see text] is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent frictional systems. We show that slip pulses are intrinsically unsteady objects-in agreement with previous findings-yet their dynamical evolution is closely related to their unstable steady-state counterparts. In particular, we show that each point along the time-independent [Formula: see text] line, obtained from a family of steady-state pulse solutions parameterized by the driving shear stress [Formula: see text], is unstable. Nevertheless, and remarkably, the [Formula: see text] line is a dynamic attractor such that the unsteady dynamics of slip pulses (when they exist)-whether growing ([Formula: see text]) or decaying ([Formula: see text])-reside on the steady-state line. The unsteady dynamics along the line are controlled by a single slow unstable mode. The slow dynamics of growing pulses, manifested by [Formula: see text], explain the existence of sustained pulses, i.e., pulses that propagate many times their characteristic size without appreciably changing their properties. Our theoretical picture of unsteady frictional slip pulses is quantitatively supported by large-scale, dynamic boundary-integral method simulations.

3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110409

RESUMO

A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is composed of arcuate "KNDy" cells, the abbreviation based on coexpression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as "leaders" and others as "followers" during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy "leader" from "follower" cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Feminino , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina B/metabolismo , Reprodução/fisiologia
4.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262915

RESUMO

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Assuntos
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
5.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475739

RESUMO

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Assuntos
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Melhoramento Vegetal , Fabaceae/genética , Glycine max , Genômica
6.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102490

RESUMO

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Assuntos
Peptídeos , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Imageamento por Ressonância Magnética , Prótons
7.
Magn Reson Med ; 92(3): 1095-1103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38576077

RESUMO

PURPOSE: To develop a method that achieves simultaneous brain and neck time-of-flight (ToF) magnetic resonance angiography (MRA) within feasible scan timeframes. METHODS: Localized quadratic (LQ) encoding is efficient for both signal-to-noise ratio (SNR) and in-flow enhancement. We proposed a spiral multiband LQ method to enable simultaneous intracranial and carotid ToF-MRA within a single scan. To address the venous signal contamination that becomes a challenge with multiband (MB) ToF, tilt-optimized non-saturated excitation (TONE) and partial-Fourier slice selection (PFSS) were further introduced in the LQ framework to mitigate the venous signal and improve artery contrast. A sequential spiral MB and LQ reconstruction pipeline was employed to obtain the brain-and-neck image volumes. RESULTS: The proposed MB method was able to achieve simultaneous brain and neck ToF-MRA within a 2:50-min scan. The complementarily boosted SNR-efficiency by MB and LQ acquisitions allows for the increased spatial coverage without increase in scan time or noticeable compromise in SNR. The incorporation of both TONE and PFSS effectively alleviated the venous contamination with improved small vessel sensitivity. Selection of scan parameters such as the LQ factor and flip angle reflected the trade-off among SNR, blood contrast, and venous suppression. CONCLUSIONS: A novel MB spiral LQ approach was proposed to enable fast intracranial and carotid ToF-MRA with minimized venous corruption. The method has shown promise in MRA applications where large spatial coverage is necessary.


Assuntos
Encéfalo , Angiografia por Ressonância Magnética , Pescoço , Razão Sinal-Ruído , Humanos , Angiografia por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Artérias Carótidas/diagnóstico por imagem , Adulto , Masculino
8.
Hum Reprod ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978296

RESUMO

STUDY QUESTION: Do hyperactive kisspeptin neurons contribute to abnormally high LH secretion and downstream hyperandrogenemia in polycystic ovary syndrome (PCOS)-like conditions and can inhibition of kisspeptin neurons rescue such endocrine impairments? SUMMARY ANSWER: Targeted inhibition of endogenous kisspeptin neuron activity in a mouse model of PCOS reduced the abnormally hyperactive LH pulse secretion and hyperandrogenemia to healthy control levels. WHAT IS KNOWN ALREADY: PCOS is a reproductive disorder characterized by hyperandrogenemia, anovulation, and/or polycystic ovaries, along with a hallmark feature of abnormal LH hyper-pulsatility, but the mechanisms underlying the endocrine impairments remain unclear. A chronic letrozole (LET; aromatase inhibitor) mouse model recapitulates PCOS phenotypes, including polycystic ovaries, anovulation, high testosterone, and hyperactive LH pulses. LET PCOS-like females also have increased hypothalamic kisspeptin neuronal activation which may drive their hyperactive LH secretion and hyperandrogenemia, but this has not been tested. STUDY DESIGN, SIZE, DURATION: Transgenic KissCRE+/hM4Di female mice or littermates Cre- controls were treated with placebo, or chronic LET (50 µg/day) to induce a PCOS-like phenotype, followed by acute (once) or chronic (2 weeks) clozapine-N-oxide (CNO) exposure to chemogenetically inhibit kisspeptin cells (n = 6 to 10 mice/group). PARTICIPANTS/MATERIALS, SETTING, METHODS: Key endocrine measures, including in vivo LH pulse secretion patterns and circulating testosterone levels, were assessed before and after selective kisspeptin neuron inhibition and compared between PCOS groups and healthy controls. Alterations in body weights were measured and pituitary and ovarian gene expression was determined by qRT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE: Acute targeted inhibition of kisspeptin neurons in PCOS mice successfully lowered the abnormally hyperactive LH pulse secretion (P < 0.05). Likewise, chronic selective suppression of kisspeptin neuron activity reversed the previously high LH and testosterone levels (P < 0.05) down to healthy control levels and rescued reproductive gene expression (P < 0. 05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Ovarian morphology was not assessed in this study. Additionally, mouse models can offer mechanistic insights into neuroendocrine processes in PCOS-like conditions but may not perfectly mirror PCOS in women. WIDER IMPLICATIONS OF THE FINDINGS: These data support the hypothesis that overactive kisspeptin neurons can drive neuroendocrine PCOS-like impairments, and this may occur in PCOS women. Our findings complement recent clinical investigations using NKB receptor antagonists to lower LH in PCOS women and suggest that pharmacological dose-dependent modulation of kisspeptin neuron activity may be a valuable future therapeutic target to clinically treat hyperandrogenism and lower elevated LH in PCOS women. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by NIH grants R01 HD111650, R01 HD090161, R01 HD100580, P50 HD012303, R01 AG078185, and NIH R24 HD102061, and a pilot project award from the British Society for Neuroendocrinology. There are no competing interests.

9.
NMR Biomed ; 37(1): e5041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37771076

RESUMO

This article proposes a numerical framework to determine the optimal magnetization preparation in a three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence to obtain the best achievable contrast between target tissues based on differences in their relaxation times. The benefit lies in the adaptation of the algorithm of optimal control, GRAdient Ascent Pulse Engineering (GRAPE), to the optimization of magnetization preparation in a cyclic sequence without full recovery between each cycle. This numerical approach optimizes magnetization preparation of an arbitrary number of radio frequency pulses to enhance contrast, taking into account the establishment of a steady state in the longitudinal component of the magnetization. The optimal control preparation offers an optimized mixed T 1 / T 2 contrast in this traditional T 1 -weighted sequence. To show the versatility of the proposed method, numerical and in vitro results are described. Examples of contrasts acquired on brain regions of a healthy volunteer are presented for potential applications at 3 T.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos
10.
J Magn Reson Imaging ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206090

RESUMO

BACKGROUND: Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL. PURPOSE: To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. STUDY TYPE: Prospective. SUBJECTS: Sixteen subjects (27 ± 8 years). FIELD STRENGTH/SEQUENCE: 1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL. ASSESSMENT: Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. STATISTICAL TESTS: Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant. RESULTS: MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). DATA CONCLUSION: Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

11.
Chemphyschem ; 25(8): e202300713, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38407996

RESUMO

Signals undergoing chemical or conformational exchange in one-dimensional NMR spectra are often identified by deuterium exchange. In order to obtain quantitative information about the dynamic processes involved, one frequently used method is EXchange SpectroscopY (EXSY). To detect all exchange processes, the EXSY experiment requires the acquisition of time-consuming two-dimensional spectra. Here we report a faster alternative, an experiment which uses spatial encoding to extract similar information in a 1D exchange-edited experiment. Thereby, all protons are observed at once, but in different slices of the detection volume. The experiment can be carried out in a single scan to identify exchanging sites in a 1D spectrum by changes in signal intensity indicating exchange processes. If the exchanging partner, for example water is in molar excess the exchange-editing method easily identifies mobile protons by negative signals in the 1D 1H NMR spectrum.

12.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366129

RESUMO

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Frequência Cardíaca , Vértebras Cervicais/diagnóstico por imagem
13.
Bioelectromagnetics ; 45(1): 4-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37408527

RESUMO

The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Campos Eletromagnéticos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia
14.
Bioelectromagnetics ; 45(5): 218-225, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533693

RESUMO

Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 µM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 µM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (p > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (p < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Exossomos , Humanos , Exossomos/metabolismo , Células A549 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Compostos de Anilina/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia
15.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500349

RESUMO

The gonadotropin-releasing hormone (GnRH) pulse is fundamental for mammalian reproduction: GnRH pulse regimens are needed as therapies for infertile women as continuous GnRH treatment paradoxically inhibits gonadotropin release. Circumstantial evidence suggests that the hypothalamic arcuate KNDy neurons expressing kisspeptin (encoded by Kiss1), neurokinin B (encoded by Tac3), and dynorphin A serve as a GnRH pulse generator; however, no direct evidence is currently available. Here, we show that rescuing >20% KNDy neurons by transfecting Kiss1 inside arcuate Tac3 neurons, but not outside of these neurons, recovered folliculogenesis and luteinizing hormone (LH) pulses, an indicator of GnRH pulses, in female global Kiss1 knockout (KO) rats and that >90% conditional arcuate Kiss1 KO in newly generated Kiss1-floxed rats completely suppressed LH pulses. These results first provide direct evidence that KNDy neurons are the GnRH pulse generator, and at least 20% of KNDy neurons are sufficient to maintain folliculogenesis via generating GnRH/gonadotropin pulses.


Assuntos
Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Organogênese , Folículo Ovariano/crescimento & desenvolvimento , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Aromatase/genética , Aromatase/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Integrases/metabolismo , Hormônio Luteinizante/sangue , Tamanho do Órgão , Folículo Ovariano/metabolismo , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores LHRH/metabolismo
16.
Zhonghua Nan Ke Xue ; 30(1): 72-76, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-39046417

RESUMO

Erectile dysfunction (ED) is one of the most common sexual disorders in males, which seriously affects the health of the patient and well-being of the family. The therapeutic strategy of ED is an individualized comprehensive treatment based on phosphodiesterase inhibitors. At present, as a new option for the treatment of ED, micro-energy medicine has attracted more and more attention in its therapeutic effects and advantages. This article presents an overview of the progress in the studies of micro-energy medicine in the treatment of ED.


Assuntos
Disfunção Erétil , Disfunção Erétil/terapia , Humanos , Masculino , Tratamento por Ondas de Choque Extracorpóreas/métodos , Inibidores de Fosfodiesterase/uso terapêutico
17.
J Food Sci Technol ; 61(2): 268-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196713

RESUMO

This is the first part of a study on developing pulse-based milk analogs using chickpea, faba bean, and cowpea as raw materials. The objectives of the present study were to determine the processing conditions for pulse-based milk analog production at laboratory-scale and to investigate the effects of some pre-treatments such as dry milling (control), soaking and wet milling, blanching, blanching and dehulling, vacuum, and germination on lipoxygenase (LOX) activity of the raw material and some physicochemical and sensory properties of the final products. Dry milling provided the lowest LOX activity and the highest yield while soaking and wet milling resulted in a substantial increase in LOX activity, lower product yield, and a final product with lower whiteness value, regardless of the pulse type. Germination caused a significant decrease in LOX activity in all pulse types, while milk analogs produced from germinated pulses received the lowest acceptability scores from consumers. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05836-7.

18.
Am Nat ; 201(5): 755-762, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130235

RESUMO

AbstractOaks (Quercus spp.) are masting species exhibiting highly variable and synchronized acorn production. We investigated the hypothesis that periodical cicadas (Magicada spp.), well known to have strong effects on the ecosystems in which they occur, affect acorn production of oaks through their xylem feeding habits as nymphs, the oviposition damage they inflict as adults during emergences, or the nutrient pulse resulting from the decomposition of their bodies following breeding. We found negative effects on acorn production during emergence years and the year following emergences and enhanced acorn production 2 years after emergence. We also found evidence indicating a significant effect of cicada emergences on spatial synchrony of acorn production by trees growing within the range of the same cicada brood compared with different broods. These results demonstrate that periodical cicadas act as a trophic environmental "veto" depressing acorn production during and immediately following emergences, after which the nutrient pulse associated with the cicada's demise enhances oak reproduction.


Assuntos
Hemípteros , Quercus , Animais , Feminino , Ecossistema , Reprodução , Árvores , Sementes
19.
J Biomol NMR ; 77(1-2): 1-14, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534224

RESUMO

The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein-protein, protein-RNA, protein-DNA, and protein-ligand interactions in aqueous solutions. Typical [1H,1H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates 1H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [Water irrAdiation DEvoid (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [1H,1H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [1H,1H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.


Assuntos
Inteligência Artificial , Prótons , Ressonância Magnética Nuclear Biomolecular , Água/química , Proteínas/química
20.
Biochem Biophys Res Commun ; 677: 93-97, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566922

RESUMO

This study explored the role of the Na/K-ATPase (NKA) in membrane permeabilization induced by nanosecond electric pulses. Using CRISPR/Cas9 and shRNA, we silenced the ATP1A1 gene, which encodes α1 NKA subunit in U937 human monocytes. Silencing reduced the rate and the cumulative uptake of YoPro-1 dye after electroporation by 300-ns, 7-10 kV/cm pulses, while ouabain, a specific NKA inhibitor, enhanced YoPro-1 entry. We conclude that the α1 subunit supports the electropermeabilized membrane state, by forming or stabilizing electropores or by hindering repair mechanisms, and this role is independent of NKA's ion pump function.


Assuntos
Eletricidade , Eletroporação , Humanos , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , RNA Interferente Pequeno/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA