Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Technol ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38276914

RESUMO

Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 µg/g with a median concentration of 42.2 µg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 µg/g vs 58.3 µg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 µg/g vs 32.6 µg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.

2.
Environ Sci Technol ; 58(14): 6236-6249, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534032

RESUMO

The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.


Assuntos
Desinfetantes , Compostos de Amônio Quaternário , Humanos , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química , Espectrometria de Massas em Tandem/métodos , Pandemias , Cromatografia Líquida , Fígado
3.
Environ Res ; 251(Pt 2): 118688, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493855

RESUMO

The widespread usage of quaternary ammonium compounds (QACs) as disinfectants during the COVID-19 pandemic poses significant environmental risks, such as toxicity to organisms and the emergence of superbugs. In this study, different inorganic salts (NaCl, KCl, CaCl2, MgCl2) were used to induce endophytes LSE01 isolated from hyperaccumulating plants. After five generations of cultivation under 80 g/L NaCl, the minimum inhibitory concentration (MIC) of LSE01 to QACs increased by about 3-fold, while its degradation extent increased from 8% to 84% for C12BDMA-Cl and 5%-89% for C14BDMA-Cl. Transmission electron microscopy (TEM) and three-dimensional fluorescence spectra indicated that the cells induced by high concentration of salt caused plasmolysis and secreted more bound extracellular polymeric substances (B-EPS); these changes are likely to be an important reason for the observed increased resistance and enhanced degradation extent of LSE01 to QACs. Our findings suggest that salt-induction could be an effective way to enhance the resistance and removal of toxic organic pollutants by functional microorganisms.


Assuntos
Endófitos , Compostos de Amônio Quaternário , Salinidade , Compostos de Amônio Quaternário/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Biodegradação Ambiental
4.
Plant Dis ; 107(10): 3176-3187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36890133

RESUMO

This quantitative review and systematic analysis of the effectiveness of quaternary ammonium compounds (QACs) in disinfesting nonfungal plant pathogens in agricultural and horticultural cropping systems is a complementary follow-up to a previous study that evaluated the efficacy of QACs against fungal plant pathogens. In the present study, a meta-analysis involving 67 studies was conducted to assess the overall efficacy of QACs against plant pathogenic bacteria, oomycetes, and viruses and to identify factors associated with observed differences in product efficacy. Across all studies, QACs resulted in a significant (P < 0.0001) reduction in either disease intensity or propagule viability with a mean Hedges' g ([Formula: see text]) of 1.75, indicating that overall QAC treatments were moderately effective against nonfungal pathogens. Significant differences in product efficacy were observed between organism types (P = 0.0001), with QAC interventions resulting in higher efficacy (P = 0.0002) against oomycetes ([Formula: see text] = 4.20) than against viruses ([Formula: see text] = 1.42) and bacteria ([Formula: see text] = 1.07), which were not different (P = 0.2689) from each other. As a result, bacterium and virus types were combined into a composite set (BacVir). QAC intervention against BacVir resulted in significant differences in efficacy within categorical moderator subgroups for genus (P = 0.0133), target material (P = 0.0001), and QAC product generation (P = 0.0281). QAC intervention against oomycetes resulted in significant differences in efficacy only for genus (P < 0.0001). For the BacVir composite, five random effect (RE) meta-regression models were significant (P = 0.05), where models with dose and time, dose and genus, time and genus, dose and target, and time and target accounted for 62, 61, 52, 83, and 88%, respectively, of the variance in true effect sizes (R2) associated with [Formula: see text]. For oomycetes, three RE meta-regression models were significant (P = 0.05), where models with dose and time, dose and genus, and time and genus accounted for 64, 86, and 90%, respectively, of R2 associated with [Formula: see text]. These results show that while QACs are moderately effective against nonfungal plant pathogens, the observed variability in their efficacy due to dose of active ingredient and contact time of these products can be influenced by organism type, genus within organism type, the target being treated, and the generation of QAC products.


Assuntos
Desinfetantes , Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/farmacologia , Bactérias
5.
Indoor Air ; 32(5): e13036, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622716

RESUMO

The frequency of surface disinfectant use has increased over the last several years in public settings such as schools, especially during the COVID-19 pandemic. Although these products are important for infection control and prevention, their increased use may intensify the exposure to both persons applying the disinfection product as well as bystanders. Safety assessments have demonstrated that these products, when used as intended, are considered safe for use and effective; however, point-of-contact effects (such as respiratory or dermal irritation) may still occur. Additionally, relative exposures may vary significantly due to the wide variation in disinfectant formulation and application methods. Quantitative estimations of exposures to two commonly used active ingredients, quaternary ammonium compounds (QACs) and ethanol, are not well characterized during product use and application scenarios. To assess the potential for health risks attributable to increased use in classroom settings, as well as to quantitatively evaluate the potential exposure to both ethanol and QACs, student and adult bystander surface and air measurements were collected in a K-8 school setting in Ohio, United States, over a three-day period. Direct-reading instruments were utilized to collect real-time air samples that characterized mass fraction concentrations following the use of the QAC- and ethanol-based disinfectants. Furthermore, surface and air sampling of microbial species were conducted to establish the overall bioburden and effectiveness of each disinfectant to inform the comparative risk and health effect impacts from the tested products use scenario. Both tested products were approximately equally effective at reducing bioburdens on desk surfaces. In some classrooms, concentrations of QAC congeners were significantly increased on desk surfaces following the application of the disinfectant spray; however, the magnitude of the change in concentration was small. Ethanol was not measured on surfaces due to its volatility. Airborne concentrations increased immediately following spray of each disinfectant product but rapidly returned to baseline. Each of the QAC congeners listed in the product safety data sheets were detected and measurable on desk surfaces; however, air concentrations were generally below the limit of detection. The 15-min time-weighted averages (TWAs) of both QACs and ethanol in the air were below respective health effects benchmarks, and therefore, the negative impact on health outcomes is considered to be minimal from short-term, repeated use of ethanol- or QAC-based spray products in a school setting when the products are used as directed.


Assuntos
Poluição do Ar em Ambientes Fechados , Desinfetantes , Compostos de Amônio Quaternário , Desinfetantes/análise , Exposição Ambiental , Etanol , Humanos , Compostos de Amônio Quaternário/análise , Instituições Acadêmicas
6.
J Toxicol Environ Health A ; 85(12): 494-510, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35191814

RESUMO

Quaternary ammonium compounds (QACs) or quats are a large class of antimicrobial chemicals used in households and institutions as sanitizers and disinfectants. These chemicals are utilized as food processing sanitizers, algicides, in the process of water treatment, and preservatives in cosmetics. The aim of this study was to determine an Adverse Outcome Pathway (AOP) whereby two widely used QACs, alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC), may result in respiratory tract and gastrointestinal tract effects. When inhaled or ingested, these QACs are incorporated into the epithelial cell membrane at the point of contact. With sufficient dosage, the epithelial membrane is disrupted, reducing its fluidity, and releasing cellular contents. Further, ADBAC and DDAC might disrupt mitochondrial functions leading to decreased ATP production. Both events might lead to cell death, either attributed to direct lysis, necrosis, or apoptosis. Pro-inflammatory mediators are recruited to the tissue, inducing inflammation, edema, and excess mucus production. The primary tissue-level adverse outcome is epithelial degeneration and dysplasia. Most important, no apparent metabolism or distribution is involved in QAC action. Based upon this knowledge, it is suggested to replace default Uncertainty Factors for risk assessments with a set of Data Derived Extrapolation Factors.


Assuntos
Rotas de Resultados Adversos , Anti-Infecciosos , Desinfetantes , Cloreto de Amônio , Antibacterianos , Anti-Infecciosos/toxicidade , Cloretos , Compostos de Amônio Quaternário/toxicidade
7.
J Clean Prod ; 379: 134632, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36246409

RESUMO

Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 µM, 2.70 µM, and 1.31 µM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 µM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.

8.
Environ Sci Technol ; 55(21): 14689-14698, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662096

RESUMO

Quaternary ammonium compounds (QACs) are commonly used in a variety of consumer, pharmaceutical, and medical products. In this study, bioaccumulation potentials of 18 QACs with alkyl chain lengths of C8-C18 were determined in the in vitro-in vivo extrapolation (IVIVE) model using the results of human hepatic metabolism and serum protein binding experiments. The slowest in vivo clearance rates were estimated for C12-QACs, suggesting that these compounds may preferentially build up in blood. The bioaccumulation of QACs was further confirmed by the analysis of human blood (sera) samples (n = 222). Fifteen out of the 18 targeted QACs were detected in blood with the ΣQAC concentrations reaching up to 68.6 ng/mL. The blood samples were collected during two distinct time periods: before the outbreak of the COVID-19 pandemic (2019; n = 111) and during the pandemic (2020, n = 111). The ΣQAC concentrations were significantly higher in samples collected during the pandemic (median 6.04 ng/mL) than in those collected before (median 3.41 ng/mL). This is the first comprehensive study on the bioaccumulation and biomonitoring of the three major QAC groups and our results provide valuable information for future epidemiological, toxicological, and risk assessment studies targeting these chemicals.


Assuntos
COVID-19 , Desinfetantes , Bioacumulação , Humanos , Pandemias , Compostos de Amônio Quaternário , SARS-CoV-2
9.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028024

RESUMO

Benzalkonium chlorides (BACs) are chemicals with widespread applications due to their broad-spectrum antimicrobial properties against bacteria, fungi, and viruses. This review provides an overview of the market for BACs, as well as regulatory measures and available data on safety, toxicity, and environmental contamination. We focus on the effect of frequent exposure of microbial communities to BACs and the potential for cross-resistant phenotypes to emerge. Toward this goal, we review BAC concentrations in consumer products, their correlation with the emergence of tolerance in microbial populations, and the associated risk potential. Our analysis suggests that the ubiquitous and frequent use of BACs in commercial products can generate selective environments that favor microbial phenotypes potentially cross-resistant to a variety of compounds. An analysis of benefits versus risks should be the guidepost for regulatory actions regarding compounds such as BACs.


Assuntos
Anti-Infecciosos/farmacologia , Compostos de Benzalcônio/farmacologia , Resistência a Medicamentos , Controle de Medicamentos e Entorpecentes/legislação & jurisprudência , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Vírus/efeitos dos fármacos
10.
J Appl Microbiol ; 126(4): 1070-1080, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30664312

RESUMO

AIMS: The assessment of the bacterial viability of chlorine- and quaternary ammonium compounds (QACs)-treated Lactobacillus cells by culture-dependent and -independent methods. METHODS AND RESULTS: Lactobacillus isolates (Lactobacillus plantarum G1, Lactobacillus plantarum B1, Lactobacillus brevis S1 and Lactobacillus paracasei W1) in biofilm and planktonic cell suspensions were treated with chlorine-based (0·018 and 0·18%) and QACs-based (0·2 and 2·0%) disinfectants for 5 min and then analysed by plate counting, flow cytometry (FCM) and fluorescence activated cell sorting (FACS). The reaction of sessile cells to disinfectants was assessed with the confocal laser scanning microscopy (CLSM). Plate counts revealed L. paracasei W1 to be substantially inactivated by both disinfectants, while counts of the other isolates to be significantly reduced only by QACs, with L. plantarum B1 and L. brevis S1 showing a greater difference between QACs concentrations and cell types. In several cases, the disinfectants caused slightly higher inactivation of planktonic than biofilm cells, with L. plantarum B1 being significantly less sensitive to QACs in biofilm cells (P < 0·05). Following FCM with a Syto® 9/PI assay, which addresses cell membrane integrity, the emergence of damaged (Syto® 9- PI+ ) and injured (Syto® 9+ PI+ ) subpopulations was often observed in cells when they were treated with QACs, whereas intact (Syto® 9+ PI- ) and unstained (Syto® 9- PI- ) subpopulations were mostly encountered in chlorine-treated cells. Except Syto® 9- PI+ , all subpopulations were recovered on agar plates following FACS, with biofilm cells showing higher culturability irrespective of conditions, probably because of the residues of the biofilm matrix which serve as a protective cover for the bacteria. The CLSM revealed a substantial cell membrane damage within the QACs-treated biofilms, however, some cells deep in the biofilm were still intact and thus remained protected against this disinfectant. CONCLUSION: We found that FCM/FACS proved useful in the analysis of lactobacilli membrane integrity in disinfection experiments as well as in recovery evaluation of planktonic-biofilm cell subpopulations. In turn, CLSM was particularly useful in investigating the resistance mechanism when Lactobacillus cells were embedded in biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the need for treatment optimization on a case-by-case basis to avoid the emergence of cells in intermediate states with recovery potential and to reach and, thus, kill all bacteria in already developed lactobacilli biofilms.


Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Lactobacillus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Citometria de Fluxo , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Microscopia Confocal
11.
J Environ Sci (China) ; 82: 213-224, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133266

RESUMO

Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms (HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products (DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds (QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC (Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol-gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10-3 log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure. The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall, the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.


Assuntos
Desinfecção/métodos , Proliferação Nociva de Algas , Nanoestruturas/química , Compostos de Amônio Quaternário/química , Purificação da Água/métodos , Vidro/química , Dióxido de Silício/química , Poluição da Água/estatística & dados numéricos
12.
Bioorg Med Chem ; 24(22): 6012-6020, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720324

RESUMO

A series of 1,4-diazabicyclo[2.2.2]octane derivatives differing by linker moiety was evaluated for activity against several strains of both Gram-positive and Gram-negative bacteria including drug-resistant strains, one strain of fungus and influenza virus A/Puerto Rico/8/34 (H1N1). All compounds exhibited high antibacterial activity against all bacteria except Proteus vulgaris. The minimum inhibitory concentrations (MICs) of compound 1c with an o-phenylenebismethyl linker and compound 1e with a propylene aliphatic linker were found to be low and were comparable or better to the reference drug ciprofloxacin for Pseudomonas aeruginosa and Staphylococcus aureus. Additionally, a time-kill assay was performed to examine the bactericidal kinetics. Compounds 1c and 1e displayed rapid killing effects against St. aureus and Ps. aeruginosa after 2h. Furthermore, compounds 1a-c with aromatic linkers and compound 1e showed the highest antiviral activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antivirais/farmacologia , Piperazinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antivirais/síntese química , Antivirais/química , Bactérias/efeitos dos fármacos , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos , Células HEK293 , Humanos , Vírus da Influenza A/efeitos dos fármacos , Cinética , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
13.
Heliyon ; 10(3): e25260, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327442

RESUMO

This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.

14.
Reprod Toxicol ; 126: 108602, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723698

RESUMO

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals would benefit significantly from scalable and innovative approaches to testing using functionally comparable reproductive models such as the nematode C. elegans. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in the average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.


Assuntos
Caenorhabditis elegans , Poluentes Ambientais , Reprodução , Caenorhabditis elegans/efeitos dos fármacos , Animais , Reprodução/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Testes de Toxicidade/métodos , Ensaios de Triagem em Larga Escala
15.
Water Res ; 260: 121945, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908315

RESUMO

N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct that forms during chloramine disinfection of municipal wastewater effluents which are increasingly used to augment drinking water supplies due to growing water scarcity. Knowledge of wastewater NDMA precursors is limited and the known pool of NDMA precursors has not closed the mass balance between precursor loading, precursor NDMA yield, and formed NDMA. Benzalkonium chlorides (BACs) are the most prevalent quaternary ammonium surfactants and have antimicrobial properties. The extensive utilization of BACs in household, commercial and industrial products has resulted in their detection in wastewater at elevated concentrations. We report the formation of a potent NDMA precursor, benzyldimethylamine (BDMA) from the biodegradation of BACs during activated sludge treatment. BDMA formation and NDMA formation potential (FP) were functions of BAC and mixed liquor suspended solids concentration at circumneutral pH, and the microbial community source. Sustained exposure to microorganisms reduced NDMA FP through successive dealkylation of BDMA to less potent precursors. BAC alkyl chain length (C8 - C16) had little impact on NDMA FP and BDMA formation because chain cleavage occurred at the C-N bond. Wastewater effluents collected from three facilities contained BDMA from 15 to 106 ng/L, accounting for an estimated 4 to 38 % of the NDMA precursor pool.


Assuntos
Compostos de Benzalcônio , Dimetilnitrosamina , Águas Residuárias , Águas Residuárias/química , Dimetilnitrosamina/química , Compostos de Benzalcônio/química , Poluentes Químicos da Água/química , Bactérias , Biodegradação Ambiental , Eliminação de Resíduos Líquidos
16.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396546

RESUMO

Salmonella remains a top bacterial pathogen implicated in several food-borne outbreaks, despite the use of antimicrobials and sanitizers during production and processing. While these chemicals have been effective, Salmonella has shown the ability to survive and persist in poultry processing environments. This can be credited to its microbial ability to adapt and develop/acquire tolerance and/or resistance to different antimicrobial agents including oxidizers, acids (organic and inorganic), phenols, and surfactants. Moreover, there are several factors in processing environments that can limit the efficacy of these antimicrobials, thus allowing survival and persistence. This mini-review examines the antimicrobial activity of common disinfectants/sanitizers used in poultry processing environments and the ability of Salmonella to respond with innate or acquired tolerance and survive exposure to persists in such environments. Instead of relying on a single antimicrobial agent, the right combination of different disinfectants needs to be developed to target multiple pathways within Salmonella.

17.
Microorganisms ; 12(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203584

RESUMO

Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 103 to 4.48 × 105 cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as Lysinibacillus, Bacillus, and Klebsiella genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.

18.
J Hazard Mater ; 465: 133483, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232547

RESUMO

Quaternary ammonium compounds (QACs) are commonly used in many products, such as disinfectants, detergents and personal care products. However, their widespread use has led to their ubiquitous presence in the environment, posing a potential risk to human and environmental health. Several methods, including direct and indirect photodegradation, have been explored to remove QACs such as benzylalkyldimethyl ammonium compounds (BACs) and alkyltrimethyl ammonium compounds (ATMACs) from the environment. Hence, in this research, a systematic review of the literature was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method to understand the fate of these QACs during direct and indirect photodegradation in UV/H2O2, UV/PS, UV/PS/Cu2+, UV/chlorine, VUV/UV/chlorine, O3/UV and UV/O3/TiO2 systems which produce highly reactive radicals that rapidly react with the QACs, leading to their degradation. As a result of photodegradation, several transformation products (TPs) of QACs are formed, which can pose a greater risk to the environment and human health than the parent QACs. Only limited research in this area has been conducted with fewer QACs. Hence, quantum mechanical calculations such as density functional theory (DFT)-based computational calculations using Gaussian09 software package were used here to explain better the photo-resistant nature of a specific type of QACs, such as BACs C12-18 and ATMACs C12, C14, C18, and their transformation pathways, providing insights into active sites participating in the phototransformation. Recognizing that different advanced oxidation processes (AOPs) come with pros and cons in the elimination of QACs, this review also highlighted the importance of implementing each AOP concerning the formation of toxic transformation products and electrical energy per order (EEO), especially when QACs coexist with other emerging contaminants (ECs).

19.
J Chromatogr A ; 1723: 464905, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38640882

RESUMO

Quaternary Ammonium Compounds (QACs) are widely used in household, medical and industrial settings. As a consequence, they are ubiquitously found in the environment. Although significant efforts have been put into the development of sensitive and reproducible analytical methods, much less effort has been dedicated to the monitoring of QACs upon sample storage and sample preparation. Here we studied the effect of storage, concentration, and extraction procedures on the concentrations of QACs in samples. Thirteen QACs selected amongst benzalkonium compounds (BACs), dialkyldimethylammonium compounds (DADMACs) and alkyltrimethylammonium compounds (ATMACs) were quantified in aqueous and solid samples using LC-MS/MS. Most QACs adsorbed on container walls could be recovered using a short washing step with MeOH containing 2 % v/v formic acid. Concentrations of QACs from aqueous solutions using solid phase extraction (SPE) with Strata-X cartridges and elution with acidified MeOH utilized to wash the emptied containers gave highly satisfactory recoveries (101-111 %). Good recoveries (89-116 %) were also obtained when extracting a spiked organic-rich synthetic soil using accelerated solvent extraction (ASE) with acidified MeOH at low solid/solvent ratio (0.4 g/20 mL). Applying the recommended methodologies to real samples collected from a Canadian wastewater treatment plant (WWTP) gave QAC concentrations in the ranges of 0.01-30 µg/L, < 1.2 µg/L, and 0.05-27 mg/kg for the influent, effluent and biosolids samples, respectively.


Assuntos
Compostos de Amônio Quaternário , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Compostos de Amônio Quaternário/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Extração em Fase Sólida/métodos , Limite de Detecção , Poluentes Químicos da Água/análise , Espectrometria de Massa com Cromatografia Líquida
20.
Microbiol Spectr ; : e0144123, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695041

RESUMO

Listeria monocytogenes is ubiquitously found in nature and can easily enter food-processing facilities due to contaminations of raw materials. Several countermeasures are used to combat contamination of food products, for instance, the use of disinfectants that contain quaternary ammonium compounds, such as benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB). In this study, we assessed the potential of the commonly used wild-type strain EGD-e to adapt to BAC and CTAB under laboratory growth conditions. All BAC-tolerant suppressors exclusively carried mutations in fepR, encoding a TetR-like transcriptional regulator, or its promoter region, likely resulting in the overproduction of the efflux pump FepA. In contrast, CTAB tolerance was associated with mutations in sugR, which regulates the expression of the efflux pumps SugE1 and SugE2. L. monocytogenes strains lacking either FepA or SugE1/2 could still acquire tolerance toward BAC and CTAB. Genomic analysis revealed that the overproduction of the remaining efflux system could compensate for the deleted one, and even in the absence of both efflux systems, tolerant strains could be isolated, which all carried mutations in the diacylglycerol kinase-encoding gene lmo1753 (dgkB). DgkB converts diacylglycerol to phosphatidic acid, which is subsequently reused for the synthesis of phospholipids, suggesting that alterations in membrane composition could be the third adaptation mechanism. IMPORTANCE Survival and proliferation of Listeria monocytogenes in the food industry are ongoing concerns, and while there are various countermeasures to combat contamination of food products, the pathogen still successfully manages to withstand the harsh conditions present in food-processing facilities, resulting in reoccurring outbreaks, subsequent infection, and disease. To counteract the spread of L. monocytogenes, it is crucial to understand and elucidate the underlying mechanism that permits their successful evasion. We present various adaptation mechanisms of L. monocytogenes to withstand two important quaternary ammonium compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA