Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Genomics ; 25(1): 847, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251920

RESUMO

BACKGROUND: The hard clam (Mercenaria mercenaria), a marine bivalve distributed along the U.S. eastern seaboard, supports a significant shellfish industry. Overharvest in the 1970s and 1980s led to a reduction in landings. While the transition of industry from wild harvest to aquaculture since that time has enhanced production, it has also exacerbated challenges such as disease outbreaks. In this study, we developed and validated a 66K SNP array designed to advance genetic studies and improve breeding programs in the hard clam, focusing particularly on the development of markers that could be useful in understanding disease resistance and environmental adaptability. RESULTS: Whole-genome resequencing of 84 individual clam samples and 277 pooled clam libraries yielded over 305 million SNPs, which were filtered down to a set of 370,456 SNPs that were used as input for the design of a 66K SNP array. This medium-density array features 66,543 probes targeting coding and non-coding regions, including 70 mitochondrial SNPs, to capture the extensive genetic diversity within the species. The SNPs were distributed evenly throughout the clam genome, with an average interval of 25,641 bp between SNPs. The array incorporates markers for detecting the clam pathogen Mucochytrium quahogii (formerly QPX), enhancing its utility in disease management. Performance evaluation on 1,904 samples demonstrated a 72.7% pass rate with stringent quality control. Concordance testing affirmed the array's repeatability, with an average agreement of allele calls of 99.64% across multiple tissue types, highlighting its reliability. The tissue-specific analysis demonstrated that some tissue types yield better genotyping results than others. Importantly, the array, including its embedded mitochondrial markers, effectively elucidated complex genetic relationships across different clam groups, both wild populations and aquacultured stocks, showcasing its utility for detailed population genetics studies. CONCLUSIONS: The 66K SNP array is a powerful and robust genotyping tool that offers unprecedented insights into the species' genomic architecture and population dynamics and that can greatly facilitate hard clam selective breeding. It represents an important resource that has the potential to transform clam aquaculture, thereby promoting industry sustainability and ecological and economic resilience.


Assuntos
Mercenaria , Polimorfismo de Nucleotídeo Único , Animais , Mercenaria/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma/métodos
2.
Antimicrob Agents Chemother ; 66(2): e0216821, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902261

RESUMO

QPX7728 is a cyclic boronate ultrabroad-spectrum beta-lactamase inhibitor, with potent activity against both serine beta-lactamases and metallo-beta-lactamases. QPX7728 can be delivered systemically by the intravenous (i.v.) or oral route of administration. Oral beta-lactam antibiotics alone or in combination with QPX7728 were evaluated for (i) sensitivity to hydrolysis by various common beta-lactamases and inhibition of hydrolysis by QPX7728, (ii) the impact of non-beta-lactamase-mediated resistance mechanisms on potency of beta-lactams, and (iii) in vitro activity against a panel of clinical strains producing diverse beta-lactamases. The carbapenem tebipenem had stability for many serine beta-lactamases from all molecular classes, followed by the cephalosporin ceftibuten. Addition of QPX7728 to tebipenem, ceftibuten, and amdinocillin completely reversed beta-lactamase-mediated resistance in cloned beta-lactamases from serine enzyme and metalloenzyme classes; the degree of potentiation of other beta-lactams varied according to the beta-lactamase produced. Tebipenem, ceftibuten, and cefixime had the lowest MICs against laboratory strains with various combinations of beta-lactamases and the intrinsic drug resistance mechanisms of porin and efflux mutations. There was a high degree of correlation between potency of various combinations against cloned beta-lactamases and efflux/porin mutants and the activity against clinical isolates, showing the importance of inhibition of beta-lactamase along with minimal impact of general intrinsic resistance mechanisms affecting the beta-lactam. Tebipenem and ceftibuten appeared to be the best beta-lactam antibiotics when combined with QPX7728 for activity against Enterobacterales that produce serine beta-lactamases or metallo-beta-lactamases.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácidos Borínicos , Ácidos Carboxílicos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/genética , beta-Lactamas/farmacologia
3.
Dis Aquat Organ ; 148: 127-144, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356896

RESUMO

With marine diseases on the rise and increased reliance on molecular tools for disease surveillance, validated pathogen detection capabilities are important for effective management, mitigation, and response to disease outbreaks. At the same time, in an era of continual evolution and advancement of molecular tools for pathogen detection, it is critical to regularly reassess previously established assays to incorporate improvements of common practices and procedures, such as the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines. Here, we reassessed, re-optimized, and improved the quantitative PCR (qPCR) assay routinely used for Quahog Parasite Unknown (QPX) disease monitoring. We made 19 significant changes to the qPCR assay, including improvements to PCR amplification efficiency, DNA extraction efficiency, inhibition testing, incorporation of linearized standards for absolute quantification, an inter-plate calibration technique, and improved conversion from copy number to number of cells. These changes made the assay a more effective and efficient tool for disease monitoring and pathogen detection, with an improved linear relationship with histopathology compared to the previous version of the assay. To support the wide adoption of validated qPCR assays for marine pathogens, we provide a simple workflow that can be applied to the development of new assays, re-optimization of old or suboptimal assays, or assay validation after changes to the protocol and a MIQE-compliant checklist that should accompany any published qPCR diagnostic assay to increase experimental transparency and reproducibility amongst laboratories.


Assuntos
Mercenaria , Parasitos , Animais , Bioensaio/veterinária , Mercenaria/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes
4.
Artigo em Inglês | MEDLINE | ID: mdl-33782010

RESUMO

QPX7728 is an ultrabroad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase-producing Enterobacterales and Acinetobacter spp. In this study, we evaluated the in vitro activity of QPX7728 (QPX; 8 µg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with various beta-lactam resistance mechanisms. Seven hundred ninety clinical isolates were included in this study; 500 isolates, termed a "representative panel," were selected to be representative of the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data. An additional 290 selected isolates ("challenge panel") that were either nonsusceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo-beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD, and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, versus 68% to 70% for QPX-MEM and QPX-PIP and 63% to 65% for TOL-TAZ and CAZ-AVI, respectively. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains versus 2% to 40% for other combinations. Increased efflux and impaired OprD had various effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varied results according to beta-lactamase production and other intrinsic resistance mechanisms.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
5.
Genomics ; 112(6): 4887-4896, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890702

RESUMO

Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.


Assuntos
Resistência à Doença/genética , Mercenaria , Doenças Parasitárias em Animais/genética , Animais , Genoma , Mercenaria/genética , Mercenaria/parasitologia , Parasitos , Polimorfismo de Nucleotídeo Único
6.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32839224

RESUMO

Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamas
7.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32868334

RESUMO

QPX7728 is a recently discovered ultra-broad-spectrum beta-lactamase inhibitor (BLI) with potent inhibition of key serine and metallo-beta-lactamases. QPX7728 enhances the potency of many beta-lactams, including carbapenems, in beta-lactamase-producing Gram-negative bacteria, including Acinetobacter spp. The potency of meropenem alone and in combination with QPX7728 (1 to 16 µg/ml) was tested against 275 clinical isolates of Acinetobacter baumannii (carbapenem-resistant A. baumannii [CRAB]) collected worldwide that were highly resistant to carbapenems (MIC50 and MIC90 for meropenem, 64 and >64 µg/ml). Addition of QPX7728 resulted in a marked concentration-dependent increase in meropenem potency, with the MIC90 of meropenem alone decreasing from >64 µg/ml to 8 and 4 µg/ml when tested with fixed concentrations of QPX7728 at 4 and 8 µg/ml, respectively. In order to identify the mechanisms that modulate the meropenem-QPX7728 MIC, the whole-genome sequences were determined for 135 isolates with a wide distribution of meropenem-QPX7728 MICs. This panel of strains included 116 strains producing OXA carbapenemases (71 OXA-23, 16 OXA-72, 16 OXA-24, 9 OXA-58, and 4 OXA-239), 5 strains producing NDM-1, one KPC-producing strain, and 13 strains that did not carry any known carbapenemases but were resistant to meropenem (MIC ≥ 4 µg/ml). Our analysis indicated that mutated PBP3 (with mutations localized in the vicinity of the substrate/inhibitor binding site) is the main factor that contributes to the reduction of meropenem-QPX7728 potency. Still, >90% of isolates that carried PBP3 mutations remained susceptible to ≤8 µg/ml of meropenem when tested with a fixed 4 to 8 µg/ml of QPX7728. In the absence of PBP3 mutations, the MICs of meropenem tested in combination with 4 to 8 µg/ml of QPX7728 did not exceed 8 µg/ml. In the presence of both PBP3 and efflux mutations, 84.6% of isolates were susceptible to ≤8 µg/ml of meropenem with 4 or 8 µg/ml of QPX7728. The combination of QPX7728 with meropenem against CRAB isolates with multiple resistance mechanisms has an attractive microbiological profile.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32152086

RESUMO

QPX7728 is a new ultrabroad-spectrum inhibitor of serine and metallo-beta-lactamases (MBLs) from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A extended-spectrum beta-lactamases (ESBLs) (50% inhibitory concentration [IC50] range, 1 to 3 nM) and carbapenemases such as KPC (IC50, 2.9 ± 0.4 nM) as well as class C P99 (IC50 of 22 ± 8 nM) with a potency that is comparable to or higher than recently FDA-approved beta-lactamase inhibitors (BLIs) avibactam, relebactam, and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/58, IC50 range, 1 to 2 nM) as well as MBLs such as NDM-1 (IC50, 55 ± 25 nM), VIM-1 (IC50, 14 ± 4 nM), and IMP-1 (IC50, 610 ± 70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high-efficiency k2/K ranging from 6.3 × 104 (for P99) to 9.9 × 105 M-1 s-1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5 to 20 min for OXA carbapenemases from A. baumannii, ∼50 min for OXA-48, and 2 to 3 h for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at a 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on-fast-off kinetics, with Ki s of 7.5 ± 2.1 nM, 32 ± 14 nM, and 240 ± 30 nM for VIM-1, NDM-1, and IMP-1, respectively. QPX7728's ultrabroad spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.


Assuntos
Serina , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Monobactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-32229489

RESUMO

QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor, with potent inhibition of key serine and metallo-beta-lactamases being observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MICs of multiple antibiotics administered intravenously only (ceftazidime, piperacillin, cefepime, ceftolozane, and meropenem) and orally bioavailable antibiotics (ceftibuten, cefpodoxime, tebipenem) alone and in combination with QPX7728 (4 µg/ml), as well as comparator agents, were determined against panels of laboratory strains of Pseudomonas aeruginosa and Klebsiella pneumoniae expressing over 55 diverse serine and metallo-beta-lactamases. QPX7728 significantly enhanced the potency of antibiotics against strains expressing class A extended-spectrum beta-lactamases (CTX-M, SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-A, BKC-1), consistent with the beta-lactamase inhibition demonstrated in biochemical assays. It also inhibited both plasmidic (CMY, FOX, MIR, DHA) and chromosomally encoded (P99, PDC, ADC) class C beta-lactamases and class D enzymes, including carbapenemases, such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/72/58). QPX7728 is also a potent inhibitor of many class B metallo-beta-lactamases (NDM, VIM, CcrA, IMP, and GIM but not SPM or L1). Addition of QPX7728 (4 µg/ml) reduced the MICs for a majority of the strains to the level observed for the control with the vector alone, indicative of complete beta-lactamase inhibition. The ultrabroad-spectrum beta-lactamase inhibition profile makes QPX7728 a viable candidate for further development.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Monobactamas , Serina , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-32229498

RESUMO

QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo-beta-lactamases at a nanomolar concentration range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impacts of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3-producing isogenic strains of Klebsiella pneumoniae and Pseudomonas aeruginosa and OXA-23-producing strains of Acinetobacter baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multidrug resistance efflux pumps either in Enterobacteriaceae or in nonfermenters, such as P. aeruginosa or A. baumannii Against P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane was permeabilized. The potency of QPX7728 against P. aeruginosa was not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8- to 16-fold), QPX7728 (4 µg/ml) nevertheless completely reversed the KPC-mediated meropenem resistance in strains with porin mutations, consistent with the lesser effect of these mutations on the potency of QPX7728 compared to that of other agents. The ultrabroad-spectrum beta-lactamase inhibition profile, combined with enhancement of the activity of multiple beta-lactam antibiotics with various sensitivities to the intrinsic resistance mechanisms of efflux and permeability, indicates that QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics.


Assuntos
Acinetobacter baumannii , Inibidores de beta-Lactamases , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Serina , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32482673

RESUMO

QPX7728 is an investigational ultrabroad-spectrum-beta-lactamase inhibitor (BLI) with potent inhibition of key serine and metallo-beta-lactamases. QPX7728 enhances the potency of many beta-lactams, including carbapenems, in isogenic strains of Gram-negative bacteria producing various beta-lactamases. The potency of meropenem alone and in combination with QPX7728 (tested at fixed concentrations of 1 to 16 µg/ml) was tested against 598 clinical isolates of carbapenem-resistant Enterobacterales (CRE). The panel included 363 strains producing serine carbapenemases, 224 strains producing metallo-beta-lactamases (151 NDM, 53 VIM, and 20 IMP), and 50 strains that did not carry any known carbapenemases but were resistant to meropenem (MIC ≥ 4 µg/ml). The panel was also enriched in strains that had various defects in the major porins OmpK35/OmpF and OmpK36/OmpC. Increasing concentrations of QPX7728 restored the potency of meropenem against CRE, with the meropenem MIC90 decreasing from >64 µg/ml to 0.5 µg/ml for QPX7728 (8 µg/ml). QPX7728 significantly increased the potency of meropenem against CRE with multiple resistance mechanisms; the reduction in the meropenem MIC90 with QPX7728 (8 µg/ml) ranged from 32- to >256-fold. Compared with other beta-lactamase inhibitor combinations, meropenem-vaborbactam, ceftazidime-avibactam, and imipenem-relebactam, meropenem with QPX7728 was the most potent beta-lactam-BLI combination tested against all groups of CRE with multiple resistance mechanisms. Defects in OmpK36 in KPC-producing strains markedly decreased the potency of meropenem with vaborbactam (128-fold increase in the MIC90), whereas only an 8- to 16-fold change was observed with QPX7728 plus meropenem. More than 90% of various CRE subsets (including those with reduced permeability) were susceptible to ≤8 µg/ml of meropenem with QPX7728 at 8 µg/ml or lower. The combination of QPX7728 with meropenem against CRE has an attractive microbiological profile in CRE with multiple resistance mechanisms.


Assuntos
Carbapenêmicos , Enterobacteriaceae/efeitos dos fármacos , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
12.
Fish Shellfish Immunol ; 77: 214-221, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29609028

RESUMO

The hard clam (Mercenaria mercenaria) is among the most economically-important marine species along the east coast of the United States, representing the first marine resource in several Northeastern states. The species is rather resilient to infections and the only important disease of hard clams results from an infection caused by Quahog Parasite Unknown (QPX), a protistan parasite that can lead to significant mortality events in wild and aquacultured clam stocks. Though the presence of QPX disease has been documented since the 1960s, little information is available on cellular and molecular interactions between the parasite and the host. This study examined the interactions between the clam immune system and QPX cells. First, the effect of clam plasma on the binding of hemocytes to parasite cells was evaluated. Second, clam plasma proteins that bind QPX cells were identified through proteomic (LC-MS/MS) analyses. Finally, the effect of prior clam exposure to QPX on the abundance of QPX-reactive proteins in the plasma was evaluated. Results showed that plasma factors enhance the attachment of hemocytes to QPX. Among the proteins that specifically bind to QPX cells, several lectins were identified, as well as complement component proteins and proteolytic enzymes. Furthermore, results showed that some of these lectins and complement-related proteins are inducible as their abundance significantly increased following QPX challenge. These results shed light on plasma proteins involved in the recognition and binding of parasite cells and provide molecular targets for future investigations of factors involved in clam resistance to the disease, and ultimately for the selection of resistant clam stocks.


Assuntos
Proteínas Sanguíneas/genética , Interações Hospedeiro-Parasita , Mercenaria/imunologia , Estramenópilas/fisiologia , Animais , Proteínas Sanguíneas/metabolismo , Mercenaria/parasitologia , Proteômica
13.
Fish Shellfish Immunol ; 49: 163-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26690665

RESUMO

Quahog Parasite Unknown (QPX) is a fatal protistan parasite that causes severe losses in the hard clam (Mercenaria mercenaria) fisheries along the northeastern coast of the US. Field and laboratory studies of QPX disease have demonstrated a major role for water temperature and M. mercenaria genetic origin in disease development. Infections are more likely to occur at cold temperatures, with clam stocks originating from southern states being more susceptible than clams from northern origin where disease is enzootic. Even though the influence of temperature on QPX infection have been examined in susceptible and resistant M. mercenaria at physiological and cellular scales, the underlying molecular mechanisms associated with host-pathogen interactions remain largely unknown. This study was carried out to explore the molecular changes in M. mercenaria in response to temperature and QPX infection on the transcriptomic level, and also to compare molecular responses between susceptible and resistant clam stocks. A M. mercenaria oligoarray (15 K Agilent) platform was produced based on our previously generated transcriptomic data and was used to compare gene expression profiles in naive and QPX-infected susceptible (Florida stock) and resistant (Massachusetts) clams maintained at temperatures favoring disease development (13 °C) or clam healing (21 °C). In addition, transcriptomic changes reflecting focal (the site of infection, mantle) and systemic (circulating hemocytes) responses were also assessed using the oligoarray platform. Results revealed significant regulation of multiple biological pathways by temperature and QPX infection, mainly associated with immune recognition, microbial killing, protein synthesis, oxidative protection and metabolism. Alterations were widely systemic with most changes in gene expression revealed in hemocytes, highlighting the role of circulating hemocytes as the first line of defense against pathogenic stress. A large number of complement-related recognition molecules with fibrinogen or C1q domains were shown to be specially induced following QPX challenge, and the expression of these molecules was significantly higher in resistant clams as compared to susceptible ones. These highly variable immune proteins may be potent candidate molecular markers for future study of M. mercenaria resistance against QPX. Beyond the specific case of clam response to QPX, this study also provides insights into the primitive complement-like system in the hard clam.


Assuntos
Temperatura Baixa , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Mercenaria/genética , Mercenaria/parasitologia , Estramenópilas/fisiologia , Transcriptoma , Animais
14.
J Invertebr Pathol ; 138: 39-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27269885

RESUMO

The hard clam, Mercenaria mercenaria, is one of the most valuable commercial mollusk species along the eastern coast of the United States. Throughout the past 2 decades, the hard clam industry in the Northeast was significantly impacted by disease outbreaks caused by a lethal protistan parasite known as Quahog Parasite Unknown (QPX). QPX is an opportunistic pathogen and the infection has been shown to be a cold water disease, where warmer conditions (above 21°C) lead to disease reduction and clam healing. In vitro studies also showed a sharp reduction in parasite growth and survivorship at temperatures exceeding 27°C. In this study, we evaluated the effect of short-term exposures to high temperatures on QPX disease dynamic and clam recovery. Infected clams were collected from an enzootic site and subsequently submitted to one of ten "heat shock" treatments involving a gradient of temperatures and exposure times. QPX prevalence was compared before and 10weeks after heat shock to assess the effect of each treatment on disease progress. Expression of several stress-related genes was measured 1 and 7days after heat shock using qPCR to evaluate the effect of each treatment on clam physiology. Anti-QPX activity in clam plasma was also measured in an attempt to link changes in defense factors to thermal stress and disease progress. Our results suggest that brief exposures to moderate high temperatures promote the greatest remission while imposing the mildest stress to clams. These results are discussed with the aim of providing the industry with possible strategies to mitigate QPX disease.


Assuntos
Hipertermia Induzida/métodos , Mercenaria/parasitologia , Infecções Protozoárias em Animais/terapia , Animais , Distribuição Aleatória
15.
Microorganisms ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399645

RESUMO

Mucochytrium quahogii, also known as QPX or Quahog Parasite Unknown, is the causative agent of QPX disease in the hard clam (Mercenaria mercenaria). Host-pathogen-environment interactions between M. quahogii, the hard clam, and temperature were explored in a microcosm experiment. Hard clams were housed in individual tanks with sterile seawater under two temperature regimes: low (13 °C) temperature, which is thought to be optimal for QPX disease development, and high (20 °C) temperature, which has been shown to promote "healing" of QPX-infected clams. Hard clam tissue, pallial fluid, seawater, and shell biofilms were collected and assayed for M. quahogii. The release of M. quahogii from naturally infected live hard clams into seawater was detected only in the low temperature treatment, suggesting that temperature influences the release of potentially infectious cells. M. quahogii was commonly found in hard clam pallial fluid, even after 9 weeks in the lab, suggesting pallial fluid is a stable reservoir of M. quahogii within its primary host and that M. quahogii is not a transient component of the hard clam microbiota. Overall, results support a host-specific relationship and that M. quahogii is a commensal member of the hard clam microbiota, supporting its classification as an opportunistic pathogen.

16.
Antibiotics (Basel) ; 11(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36551367

RESUMO

Although new-generation antimicrobials, in particular ß-lactam/ß-lactamase inhibitors, have largely replaced polymyxins in carbapenem-resistant Gram-negative bacterial infections, polymyxins are still needed for carbapanem-resistant Acinetobacter baumannii infections and in settings where novel agents are not readily available. Despite their potent in vitro activity, the clinical utility of polymyxins is significantly limited by their pharmacokinetic properties and nephrotoxicity risk. There is significant interest, therefore, in developing next-generation polymyxins with activity against colistin-resistant strains and lower toxicity than existing polymyxins. In this review, we aim to present the antibacterial activity mechanisms, in vitro and in vivo efficacy data, and toxicity profiles of new-generation polymyxins, including SPR206, MRX-8, and QPX9003, as well as the general characteristics of old polymyxins. Considering the emergence of colistin-resistant strains particularly in endemic regions, the restoration of the antimicrobial activity of polymyxins via PBT2 is also described in this review.

17.
J Fungi (Basel) ; 8(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354895

RESUMO

Mucochytrium quahogii, commonly known as QPX (Quahog Parasite Unknown), is the causative agent of QPX disease in hard clams (Mercenaria mercenaria), but poor understanding of the relationship between host and pathogen has hindered effective management. To address this gap in knowledge, we conducted a two-year study quantifying the distribution and abundance of M. quahogii in hard clam tissue, pallial fluid, and the environment. M. quahogii was broadly distributed in clams and the environment, in areas with and without a known history of QPX disease. M. quahogii in clams was not strongly related to M. quahogii in the environment. M. quahogii was always present in either the tissue or pallial fluid of each clam, with an inverse relationship between the abundance in the two anatomical locations. This study suggests that the sediment-water interface and clam pallial fluid are environmental reservoirs of M. quahogii and that there is a host-specific relationship between M. quahogii and the hard clam, supporting its classification as a commensal, opportunistic pathogen. There appears to be minimal risk of spreading QPX disease to naïve clam populations because M. quahogii is already present and does not appear to be causing disease in hard clam populations in locations unfavorable for pathogenesis.

18.
J Mol Model ; 28(4): 76, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35243556

RESUMO

Antibiotic-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, and Enterobacterales infections are serious global health problems, and class A ß-lactamases are one mechanism that leads to antibiotic resistance. QPX7728, relebactam, and enmetazobactam are new ß-lactamase inhibitors to combat ß-lactam resistance. in silico approach was used in the current study to find which of the three inhibitors would be more effective for all class A ß-lactamases and to reveal molecular insights into the differences between their binding energies. The mutations in conserved residues of the active sites of ß-lactamases were defined using BLDB and Clustal Omega. FastME and MMseq2 were used for cluster and phylogeny analysis. 3D protein structure models for ß-lactamases were built using SWISS-MODEL. ERRAT and Galaxy Web Server were used to verify 42 ß-lactamase protein structures. QPX7728, relebactam, and enmetazobactam were docked to ß-lactamases by using AutoDock 4.2. The TEM76-relebactam, CTX-M-81-relebactam, TEM-76-enmetazobactam, and CTX-M-200-enmetazobactam complexes were simulated by molecular dynamics method for 500 ns. Based on molecular docking results, relebactam and QPX7728 were more favorable inhibitors for serine A ß-lactamases. A 2D representation of the interactions between ligands and ß-lactamases showed that S235, hydrogen bonded with TEM-76, might play a role in inhibitor design. A 500-ns MD analysis of complexes indicated that distance from S70, stability in the enzyme active cavity, and high atomic displacement would account for a significant difference in inhibitor binding affinity.


Assuntos
Compostos Azabicíclicos , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Ácidos Borínicos , Ácidos Carboxílicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Triazóis , beta-Lactamases/genética
19.
Front Microbiol ; 12: 697180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290688

RESUMO

QPX7728 is a novel ß-lactamase inhibitor (BLI) that belongs to a class of cyclic boronates. The first member of this class, vaborbactam, is a BLI in the recently approved Vabomere (meropenem-vaborbactam). In this paper we provide the overview of the biochemical, structural and microbiological studies that were recently conducted with QPX7728. We show that QPX7728 is an ultra-broad-spectrum ß-lactamase inhibitor with the broadest spectrum of inhibition reported to date in a single BLI molecule; in addition to potent inhibition of clinically important serine ß-lactamases, including Class A and D carbapenemases from Enterobacterales and notably, diverse Class D carbapenemases from Acinetobacter, it also inhibits many metallo ß-lactamases. Importantly, it is minimally affected by general intrinsic resistance mechanisms such as efflux and porin mutations that impede entry of drugs into gram-negative bacteria. QPX7728 combinations with several intravenous (IV) ß-lactam antibiotics shows broad coverage of Enterobacterales, Acinetobacter baumannii and Pseudomonas aeruginosa, including strains that are resistant to other IV ß-lactam-BLI combinations, e.g., ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam and imipenem-relebactam that were recently approved for clinical use. Based on studies with P. aeruginosa, different partner ß-lactams in combination with QPX7728 may be optimal for the coverage of susceptible organisms. This provides microbiological justification for a stand-alone BLI product for co-administration with different ß-lactams. QPX7728 can also be delivered orally; thus, its ultra-broad ß-lactamase inhibition spectrum and other features could be also applied to oral QPX7728-based combination products. Clinical development of QPX7728 has been initiated.

20.
Infect Dis Ther ; 10(4): 1815-1835, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34357517

RESUMO

The treatment of urinary tract infections (UTIs) has been complicated by the emergence of multidrug-resistant, ß-lactamase-expressing pathogens. As a result of the limited treatment options, patients often require hospitalization and intravenous therapy. In essence, a strong unmet need for oral antibiotics, active against extended-spectrum ß-lactamase (ESBL) uropathogens has emerged. Oral carbapenems (tebipenem and sulopenem) and oral cephalosporin/ß-lactamase inhibitor combinations are in various stages of clinical development for the treatment of uncomplicated and complicated UTI. Tebipenem, if approved, will be the first oral treatment for complicated UTI while sulopenem will be for uncomplicated UTI. The ß-lactamase inhibitors ETX0282, VNRX7145, ARX1796, and QPX7728 are combined with cefpodoxime proxetil or ceftibuten that achieve favorable exposures in urine compared to other uropathogen-active oral cephalosporins. The combination ceftibuten-QPX7728 has potential broad-spectrum coverage against carbapenemase producers including metallo ß-lactamase producers. Other novel combinations, namely cefpodoxime/ETX0282, ceftibuten/VNRX-7145, and ceftibuten/ARX1796, have also demonstrated excellent activity against Klebsiella pneumoniae carbapanemase (KPC) and OXA-48-like producers. All these agents, upon their arrival for commercial use, would strengthen the outpatient therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA