Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cytotherapy ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38842968

RESUMO

Although several cell-based therapies have received FDA approval, and others are showing promising results, scalable, and quality-driven reproducible manufacturing of therapeutic cells at a lower cost remains challenging. Challenges include starting material and patient variability, limited understanding of manufacturing process parameter effects on quality, complex supply chain logistics, and lack of predictive, well-understood product quality attributes. These issues can manifest as increased production costs, longer production times, greater batch-to-batch variability, and lower overall yield of viable, high-quality cells. The lack of data-driven insights and decision-making in cell manufacturing and delivery is an underlying commonality behind all these problems. Data collection and analytics from discovery, preclinical and clinical research, process development, and product manufacturing have not been sufficiently utilized to develop a "systems" understanding and identify actionable controls. Experience from other industries shows that data science and analytics can drive technological innovations and manufacturing optimization, leading to improved consistency, reduced risk, and lower cost. The cell therapy manufacturing industry will benefit from implementing data science tools, such as data-driven modeling, data management and mining, AI, and machine learning. The integration of data-driven predictive capabilities into cell therapy manufacturing, such as predicting product quality and clinical outcomes based on manufacturing data, or ensuring robustness and reliability using data-driven supply-chain modeling could enable more precise and efficient production processes and lead to better patient access and outcomes. In this review, we introduce some of the relevant computational and data science tools and how they are being or can be implemented in the cell therapy manufacturing workflow. We also identify areas where innovative approaches are required to address challenges and opportunities specific to the cell therapy industry. We conclude that interfacing data science throughout a cell therapy product lifecycle, developing data-driven manufacturing workflow, designing better data collection tools and algorithms, using data analytics and AI-based methods to better understand critical quality attributes and critical-process parameters, and training the appropriate workforce will be critical for overcoming current industry and regulatory barriers and accelerating clinical translation.

2.
Cytotherapy ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38958627

RESUMO

Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.

3.
Biotechnol Bioeng ; 121(4): 1257-1270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328831

RESUMO

Enabling real-time monitoring and control of the biomanufacturing processes through product quality insights continues to be an area of focus in the biopharmaceutical industry. The goal is to manufacture products with the desired quality attributes. To realize this rigorous attribute-focused Quality by Design approach, it is critical to support the development of processes that consistently deliver high-quality products and facilitate product commercialization. Time delays associated with offline analytical testing can limit the speed of process development. Thus, developing and deploying analytical technology is necessary to accelerate process development. In this study, we have developed the micro sequential injection process analyzer and the automatic assay preparation platform system. These innovations address the unmet need for an automatic, online, real-time sample acquisition and preparation platform system for in-process monitoring, control, and release of biopharmaceuticals. These systems can also be deployed in laboratory areas as an offline analytical system and on the manufacturing floor to enable rapid testing and release of products manufactured in a good manufacturing practice environment.


Assuntos
Tecnologia Farmacêutica , Controle de Qualidade
4.
Biomed Chromatogr ; 38(3): e5812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228470

RESUMO

A systematic and novel quality by design-enabled, rapid, simple, and economic stability-indicating HPLC method for quantifying nirmatrelvir (NMT) was successfully developed and validated. An analytical target profile (ATP) was established, and critical analytical attributes (CAAs) were allocated to meet the ATP requirements. The method used chromatographic separation using a Purosphere column with a 4.6 mm inner diameter × 250 mm (2.5 µm). The analysis occurred at 50°C with a flow rate of 1.2 mL/min and detection at 220 nm. A 10 µL sample was injected, and the mobile phase consisted of two components: mobile phase A, containing 0.1% formic acid in water (20%), and mobile phase B, containing 0.1% formic acid in acetonitrile (80%). The diluent was prepared by mixing acetonitrile and water at a 90:10 v/v ratio. The retention time for the analyte was determined to be 2.78 min. Accuracy exceeded 99%, and the correlation coefficient was greater than 0.999. The validated HPLC method was characterized as precise, accurate, and robust. Significantly, NMT was found to be susceptible to alkaline, acidic, and peroxide conditions during forced degradation testing. The stability-indicating method developed effectively separated the degradation products formed during stress testing, underlining its effectiveness in stability testing and offering accuracy, reliability, and sensitivity in determining NMT.


Assuntos
Trifosfato de Adenosina , Formiatos , Água , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Estabilidade de Medicamentos , Acetonitrilas , Preparações Farmacêuticas
5.
Chimia (Aarau) ; 78(3): 135-141, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547015

RESUMO

A telescoped, two-step synthesis was investigated by applying Quality by Design principles. A kinetic model consisting of 12 individual reactions was successfully established to describe the synthesis and side reactions. The resulting model predicts the effects of changes in process parameters on total yield and quality. Contour plots were created by varying process parameters and displaying the model predicted process response. The areas in which the process response fulfils predetermined quality requirements are called design spaces. New ranges for process parameters were explored within these design spaces. New conditions were found that increased the robustness of the process and allowed for a considerable reduction of the used amounts of a reagent. Further optimizations, based on the newly generated knowledge, are expected. Improvements can either be direct process improvements or enhancements to control strategies. The developed strategies can also be applied to other processes, enhancing upcoming and preexisting research and development efforts.

6.
AAPS PharmSciTech ; 25(5): 134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862663

RESUMO

Inclusion complexes require higher concentration of Beta cyclodextrins (ßCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a ßCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and ß-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.


Assuntos
Ciclodextrinas , Povidona , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Liberação Controlada de Fármacos , Excipientes/química , Peso Molecular , Projetos Piloto , Povidona/química , Termodinâmica
7.
Ann Pharm Fr ; 82(3): 446-463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37866637

RESUMO

OBJECTIVE: Lamotrigine (LTG) an anticonvulsant drug with a dissociation constant (pKa: 5.7), suffers from enhanced blood plasma spike after each dose, when administered as fast release tablet. Being BCS class-II candidate and pH dependent solubility, development of release-controlled tablets of LTG is a major challenge. This investigation aims at designing the release-controlled tablet (RCT) formulation of LTG using a solid dispersion (SD) technique via addressing its solubility and release problems. MATERIAL AND METHODS: RCT of LTG was fabricated using SD blend of Eudragit RL and Eudragit RS and PVP K-30 with different polymer blend ratio (1:5 and 1:7). The optimization of RCT of LTG was performed using D-optimal mixture design with three independent variables, three response variables, and one constraint. The dissolution rate was determined and data were then fitted to different mathematical models. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies and tableting parameters were analyzed. RESULT: In vitro studies of predicted optimized batches (POBs) have shown that drug release over a period of 12hours was 88.05±3.4% in media I, 86.10±3.7% in media II and 85.84±4.2% in media III. An in vitro kinetic model equating R2-value for all the tested models indicated that the first order and Higuchi release kinetics model were the most appropriate. CONCLUSION: Based on the optimized formulation consisting of SD of LTG with Eudragit RL, Eudragit RS and PVP K-30, the release rate was consistently similar throughout the GI tract, regardless of the pH of the environment.

8.
Mol Pharm ; 20(11): 5332-5344, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37783568

RESUMO

Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.


Assuntos
Portadores de Fármacos , Inaladores de Pó Seco , Pós , Composição de Medicamentos/métodos , Administração por Inalação , Simulação por Computador , Tamanho da Partícula , Aerossóis
9.
Biomed Chromatogr ; 37(8): e5641, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37041119

RESUMO

A sensitive, rapid, reproducible, and economical HPLC method is reported for the quantification of raloxifene hydrochloride employing Quality by Design (QbD) principles. Factor screening studies, employing Taguchi design, indicated buffer volume percentage and isocratic flow rate as the critical method parameters (CMPs), which significantly influence the chosen critical analytical attributes, that is, tailing factor and theoretical plate number. Method conditions were subsequently optimized using face-centered cubic design with magnitude of variance inflation factor for assessing multicollinearity among CMPs. Method operable design region (MODR) was earmarked and liquid chromatographic separation optimized using 0.05 M citrate buffer, acetonitrile, and methanol (57:40:3 v/v/v) as ggmobile phase at 0.9 mL min-1 flow rate, λmax of 280 nm, and column temperature of 40°C. Validation of the developed analytical method was accomplished as per International Council on Harmonization (ICH) guidelines confirming high levels of linearity, precision, accuracy, robustness, and sensitivity. Application of Monte Carlo simulations enabled the attainment of best plausible chromatographic resolution and corroboration of the demarcated MODR. Establishment and validation of the bioanalytical method using rat plasma samples, along with forced degradation and stability studies, corroborated the aptness of developed HPLC methods for drug quantification in the biological fluids, as well as in bulk and marketed dosage forms.


Assuntos
Cloridrato de Raloxifeno , Animais , Ratos , Método de Monte Carlo , Reprodutibilidade dos Testes , Limite de Detecção , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
10.
AAPS PharmSciTech ; 24(1): 32, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627414

RESUMO

Migraine headaches are usually intolerable, and a quick-relief treatment remains an unmet medical need. Almotriptan malate is a serotonin (5-HT1B/1D) receptor agonist approved for the treatment of acute migraine in adults. It is currently available in an oral tablet dosage form and has a Tmax of 1-3 h, and therefore, there is a medical need to develop a non-invasive rapidly acting formulation. We have developed an intranasal formulation of almotriptan malate using the quality-by-design (QbD) approach. A 2-factor 3-level full factorial design was selected to build up the experimental setting. The developed formulation was characterized for pH, viscosity, in vitro permeation, ex vivo permeation, and histopathological tolerance. To assess the potential of the developed formulation to produce a rapid onset of action following intranasal delivery, a pharmacokinetic study was performed in the Sprague-Dawley rat model and compared to the currently available marketed oral tablet formulation. For this, the LC-MS/MS bioanalytical method was developed and used for the determination of plasma almotriptan malate concentrations. Results of a pharmacokinetic study revealed that intranasal administration of optimized almotriptan malate formulation enabled an almost five-fold reduction in Tmax and about seven-fold increase in bioavailability in comparison to the currently available oral tablet formulation, suggesting the potential of developed almotriptan malate intranasal formulation in producing a rapid onset of action as well as enhanced bioavailability.


Assuntos
Transtornos de Enxaqueca , Agonistas do Receptor de Serotonina , Animais , Ratos , Administração Intranasal , Cromatografia Líquida , Agonistas do Receptor de Serotonina/farmacocinética , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Triptaminas/farmacocinética , Transtornos de Enxaqueca/tratamento farmacológico , Serotonina/uso terapêutico , Comprimidos
11.
AAPS PharmSciTech ; 24(7): 210, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821749

RESUMO

Traditional methods of producing Xiaochaihu (XCH) capsules, a traditional Chinese medicine, are time-consuming, costly, and labor-intensive, which is not conductive to modernizing TCM. To address the challenges, new fluid-bed granulation and drying processes with water as the binder were developed and optimized guided by the principles of Quality by Design (QbD) in this study. Ishikawa diagram was applied to conduct a preliminary risk assessment, followed by 6-factor definitive screening design (DSD) serving as a QbD statistical tool to develop and optimize the new processes. Multiple potential factors and interactions were studied with a small number of experiments using the DSD. This study identified critical process parameters (CPPs), established quadratic regression models to reveal CPP-critical quality attributes (CQAs) connections within the DSD framework, and defined a dependable design space. Processes conducted by parameter combinations in the design space produced qualified granules with production yield and raw material utilization higher than 90% and moisture content lower than 4%. Furthermore, quantitative analysis of baicalin of all the granules ensured qualified contents of active pharmaceutical ingredient. The newly developed processes for XCH capsules, with advantages of shorter time, environmental friendliness, and decreased cost, exemplify the effective application of QbD and design of experiments (DoE) methodologies in the modernization of TCM manufacturing processes.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Dessecação/métodos , Medição de Risco
12.
Pharm Res ; 39(9): 2095-2107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927509

RESUMO

Quality risk management is an important task when it pertains to the pharmaceutical industry, as this is directly related to product performance. With the ICH Q9 guidelines, several regulatory bodies have encouraged the pharmaceutical industry to implement risk management plans using scientific and systemic approaches such as quality-by-design to asses product quality. However, the implementation of such methods has been challenging as assessment of risks requires accurate quantitative models to predict changes in quality when variations occur. This study describes a framework that quantitatively assesses risk for a twin screw wet granulation process. This framework consists of a physics-constrained autoencoder system, whose outputs are constrained using physics-based boundary conditions. The latent variables obtained from the auto-encoder are used in a support vector machine-based classifier to understand the granule growth behavior occurring within the system. This framework is able to predict the process outcomes with 86% accuracy and classify the granule growth regimes with a true positive rate of 0.73. Based on the classification the risk associated with the process can be estimated.


Assuntos
Máquina de Vetores de Suporte , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tamanho da Partícula , Física , Medição de Risco , Tecnologia Farmacêutica/métodos
13.
Biol Pharm Bull ; 45(11): 1706-1715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328506

RESUMO

Wear-resistant polymers and ceramics-based media have been used to pulverize the bulk powder of poorly water-soluble drugs to nanoscale size in conventional milling; however, contamination of such media is still an issue in the context of drug formulation manufacturing. In the present study, we developed a novel method for pulverizing the particles of a poorly water-soluble drug, ketoprofen, to nanoscale size by mixing mannitol and polypropylene glycol as a safe pulverizing medium. The ketoprofen nanoparticles were prepared using a Hoover automatic muller, equipment that traditionally has been used for the mixing of paint and ink. This process represents a novel application of this machine for the on-demand preparation of nanoparticulate formulations for use in the clinical setting. The optimal composition of the drug formulation was determined by designing an experiment consisting of the central composite design and responsive surface method. We obtained a design space that yielded ketoprofen nanoparticles with targeted particle size, poly-dispersity index, and drug release properties. We validated the manufacturing conditions by preparing ketoprofen nanoparticles in four compositions. Thus, the present study provided useful information regarding not only simple and effective contamination-free milling but also the experimental conditions need to produce nanoparticles of a poorly water-soluble drug.


Assuntos
Cetoprofeno , Nanopartículas , Manitol , Tamanho da Partícula , Composição de Medicamentos/métodos , Água , Solubilidade
14.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615205

RESUMO

Nanomedicine is an emerging field with continuous growth and differentiation. Liposomal formulations are a major platform in nanomedicine, with more than fifteen FDA-approved liposomal products in the market. However, as is the case for other types of nanoparticle-based delivery systems, liposomal formulations and manufacturing is intrinsically complex and associated with a set of dependent and independent variables, rendering experiential optimization a tedious process in general. Quality by design (QbD) is a powerful approach that can be applied in such complex systems to facilitate product development and ensure reproducible manufacturing processes, which are an essential pre-requisite for efficient and safe therapeutics. Input variables (related to materials, processes and experiment design) and the quality attributes for the final liposomal product should follow a systematic and planned experimental design to identify critical variables and optimal formulations/processes, where these elements are subjected to risk assessment. This review discusses the current practices that employ QbD in developing liposomal-based nano-pharmaceuticals.


Assuntos
Lipossomos , Nanopartículas , Composição de Medicamentos , Nanomedicina , Medição de Risco
15.
AAPS PharmSciTech ; 23(5): 120, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35460024

RESUMO

Controlled release dosage forms maintain regulated pharmacokinetic profile of drug substance within its therapeutic window by ensuring constant plasma concentrations. Controlled release formulations not only increase the therapeutic efficacy of drug substances but also reduce their dose-related side effects. Present investigation was conducted to develop, optimize, and validate compressed coated controlled release tablet formulation for highly water-soluble drug substances which have no rate-controlling factor towards its release from dosage form. Drug dispersed waxy core tablet, press coated within the swellable hydrophilic polymeric barrier layer, was developed and optimized via quality by design approach (QbD) using Box-Behnken design. The optimized formulation was characterized and validated using in vitro quality control parameters. Attributes identified under SUPAC guidelines, such as drug release rates at 30 min, 6 h, and 12 h, were considered as the critical quality attributes (CQAs) that significantly affected efficiency of the compressed coated controlled release tablets. CQAs screened using risk assessment and Pareto chart analyses were used for optimizing controlled release dosage form. Findings revealed that tablets containing drug to wax ratio of 1:1, hydrophilic swellable polymer concentration of 200 mg, and prepared using compression pressure of 6.5 kg/cm2 exhibited the highest desirability indices in terms of controlling the release rate of drug substance. Optimized formulation was also evaluated for swelling rate, erosion rate, and other post-compression parameters, including release kinetics. Fickian diffusion-based zero-order controlled release of BCS class I drug substance was achieved through the developed dosage form.


Assuntos
Polímeros , Água , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Comprimidos
16.
Cytotherapy ; 23(10): 953-959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34229963

RESUMO

BACKGROUND AIMS: This article describes the development of a small-scale model for Ficoll-based cell separation as part of process development of an advanced therapy medicinal product and its qualification. Because of the complexity of biological products, their manufacturing process as well as characterization and control needs to be accurately understood. Likewise, scale-down models serve as an indispensable tool for process development, characterization, optimization and validation. This scale-down model represents a cell processor device widely used in advance therapies. This approach is inteded to optimise resources and to focus its use on process characterisation studies under the paradigm of the Quality by design. A scale-down model should reflect the large manufacturing scale. Consequently, this simplified system should offer a high degree of control over the process parameters to depict a robust model, even considering the process limitations. For this reason, a model should be developed and qualified for the intended purpose. METHODS: Process operating parameters were studied, and their resulting performance at full scale was used as a baseline to guide scale-down model development. Once the model was established, comparability runs were performed by establishing standard operating conditions with bone marrow samples. These analyses showed consistency between the bench and the large scale. Additionally, statistical analyses were employed to demonstrate equivalence. RESULTS: The process performance indicators and assessed quality attributes were equivalent and fell into the acceptance ranges defined for the large-scale process. CONCLUSIONS: This scale-down model is suitable for use in process characterization studies.


Assuntos
Produtos Biológicos , Ficoll
17.
Biotechnol Bioeng ; 118(9): 3593-3603, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185315

RESUMO

The biopharmaceutical industry is transitioning from currently deployed batch-mode bioprocessing to a highly efficient and agile next-generation bioprocessing with the adaptation of continuous bioprocessing, which reduces capital investment and operational costs. Continuous bioprocessing, aligned with FDA's quality-by-design platform, is designed to develop robust processes to deliver safe and effective drugs. With the deployment of knowledge-based operations, product quality can be built into the process to achieve desired critical quality attributes (CQAs) with reduced variability. To facilitate next-generation continuous bioprocessing, it is essential to embrace a fundamental shift-in-paradigm from "quality-by-testing" to "quality-by-design," which requires the deployment of process analytical technologies (PAT). With the adaptation of PAT, a systematic approach of process and product understanding and timely process control are feasible. Deployment of PAT tools for real-time monitoring of CQAs and feedback control is critical for continuous bioprocessing. Given the current deficiency in PAT tools to support continuous bioprocessing, we have integrated Infinity 2D-LC with a post-flow-splitter in conjunction with the SegFlow autosampler to the bioreactors. With this integrated system, we have established a platform for online measurements of titer and CQAs of monoclonal antibodies as well as amino acid analysis of bioreactor cell culture.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Modelos Teóricos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo
18.
Appl Microbiol Biotechnol ; 105(6): 2243-2260, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33598720

RESUMO

Overexpression of recombinant proteins in Escherichia coli results in misfolded and non-active protein aggregates in the cytoplasm, so-called inclusion bodies (IB). In recent years, a change in the mindset regarding IBs could be observed: IBs are no longer considered an unwanted waste product, but a valid alternative to produce a product with high yield, purity, and stability in short process times. However, solubilization of IBs and subsequent refolding is necessary to obtain a correctly folded and active product. This protein refolding process is a crucial downstream unit operation-commonly done as a dilution in batch or fed-batch mode. Drawbacks of the state-of-the-art include the following: the large volume of buffers and capacities of refolding tanks, issues with uniform mixing, challenging analytics at low protein concentrations, reaction kinetics in non-usable aggregates, and generally low re-folding yields. There is no generic platform procedure available and a lack of robust control strategies. The introduction of Quality by Design (QbD) is the method-of-choice to provide a controlled and reproducible refolding environment. However, reliable online monitoring techniques to describe the refolding kinetics in real-time are scarce. In our view, only monitoring and control of re-folding kinetics can ensure a productive, scalable, and versatile platform technology for re-folding processes. For this review, we screened the current literature for a combination of online process analytical technology (PAT) and modeling techniques to ensure a controlled refolding process. Based on our research, we propose an integrated approach based on the idea that all aspects that cannot be monitored directly are estimated via digital twins and used in real-time for process control. KEY POINTS: • Monitoring and a thorough understanding of refolding kinetics are essential for model-based control of refolding processes. • The introduction of Quality by Design combining Process Analytical Technology and modeling ensures a robust platform for inclusion body refolding.


Assuntos
Corpos de Inclusão , Dobramento de Proteína , Cinética , Redobramento de Proteína , Proteínas Recombinantes/genética , Tecnologia
19.
Chem Pharm Bull (Tokyo) ; 69(2): 211-217, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298636

RESUMO

As a result of the research activities of the Japan Agency for Medical Research and Development (AMED), this document aims to show an approach to establishing control strategy for continuous manufacturing of oral solid dosage forms. The methods of drug development, technology transfer, process control, and quality control used in the current commercial batch manufacturing would be effective also in continuous manufacturing, while there are differences in the process development using continuous manufacturing and batch manufacturing. This document introduces an example of the way of thinking for establishing a control strategy for continuous manufacturing processes.


Assuntos
Formas de Dosagem , Composição de Medicamentos/métodos , Administração Oral , Formas de Dosagem/normas , Composição de Medicamentos/normas , Indústria Manufatureira/normas , Controle de Qualidade
20.
J Liposome Res ; 31(4): 381-388, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33183121

RESUMO

The aim of the current study was to develop the phytosomal gel of aloe vera extract for improved topical delivery. Aloe vera extract loaded phytosomal system was developed by fixing the amount of aloe vera extract and ethanol and by varying the concentration of lecithin (0.15-0.25% w/v) and speed of rotation (80-120 rpm). Different formulation batches were prepared as per the Design expert software. A 22 Factorial design was applied to optimize the formulation on the basis of vesicular size and entrapment efficiency. Developed formulations were evaluated for vesicular size, entrapment efficiency, PDI, zeta potential and in-vitro release. Further stability studies were also performed. For the optimized formulation (F09), vesicular size, entrapment efficiency and PDI were found as 123.1 ± 1.44 nm, 95.67 ± 0.27% and 0.98 ± 0.06. Zeta potential of -11.9 mV and drug release of 56.91 ± 4.1% obtained in 24 h. Drug release kinetics from the phytosomes follows Higuchi model. TEM micrograph confirms the uniform structure of phytosomes. Phytosomal gel of optimized phytosomal formulation (F09) was developed with 1% Carbopol 934 and physically characterized on the basis of pH, viscosity, homogeneity and drug content. Ex-vivo permeation study showed the better permeation and flux profile of phytosomal gel with the conventional aloe vera extract gel. Also, studies on phytosomal formulation and gel showed stability up-to 3 months. Thus overall, it can be concluded that the phytosomal gel is a good carrier for topical delivery of herbal extract such as aloe vera.


Assuntos
Aloe , Liberação Controlada de Fármacos , Lipossomos , Extratos Vegetais , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA