RESUMO
BACKGROUND: In this paper, -6, -9 and -12 °C were selected as subfreezing temperatures of dough containing pea protein based on the results of low-field nuclear magnetic relaxation time. The effect of storage at subfreezing temperatures on dough properties was then investigated and compared with sample storage at -18 °C. RESULTS: The pH value, springiness, resilience, cohesiveness of dough and sensory score of bread gradually decreased and the hardness and water loss rate of dough gradually increased with the extension of storage time. However, dough hardness, viscoelasticity and fermentation volume were maintained more effectively in subfreezing storage than in -18 °C storage. The subfreezing temperature could alleviate the damage of gluten network structure in frozen dough by ice crystals and was beneficial in maintaining the elasticity of gluten proteins. The network system of pea protein, gluten protein and starch granules in dough storage at -9 and -12 °C was more tightly connected and the microstructure was similar to that at -18 °C. There was no significant difference between the quality of bread made from the dough stored at subfreezing temperature and that stored at -18 °C for 1-6 weeks, and the preservation effect at -12 °C was closer to that at -18 °C. CONCLUSION: Subfreezing storage can keep the stability of dough containing pea protein close to traditional frozen storage (-18 °C), which provides a new method for storage and transportation of frozen dough. © 2022 Society of Chemical Industry.
Assuntos
Pão , Proteínas de Ervilha , Farinha , Congelamento , Glutens/química , ViscosidadeRESUMO
The fruit of Lycium barbarum L. (FLB) has been used as medicines and functional foods for more than 2000 years in East Asia. In this study, carotenoid, phenolic, flavonoid, and polysaccharide contents as well as the antioxidant activities of FLB from 13 different regions in China from a total of 78 samples were analyzed. The results showed that total carotenoid contents ranged from 12.93 to 25.35 mg ß-carotene equivalents/g DW. Zeaxanthin dipalmitate was the predominant carotenoid (4.260-10.07 mg/g DW) in FLB. The total phenolic, total flavonoid, and total polysaccharide contents ranged from 6.899 to 8.253 mg gallic acid equivalents/g DW, 3.177 to 6.144 mg rutin equivalents/g DW, and 23.62 to 42.45 mg/g DW, respectively. Rutin content ranged from 0.1812 to 0.4391 mg/g DW, and ferulic acid content ranged from 0.0994 to 0.1726 mg/g DW. All of these FLB could be divided into two clusters with PCA analysis, and both individual carotenoids and total carotenoid contents could be used as markers for regional characterization. The phenolic components were the main substance for the antioxidant activity of FLB. Considering the functional component and antioxidant activities, FLB produced in Guyuan of Ningxia was the closest to Daodi herbs (Zhongwei of Ningxia), which is commercially available high quality FLB. The results of this study could provide guidance for comprehensive applications of FLB production in different regions.
Assuntos
Antioxidantes/farmacologia , Frutas/química , Lycium/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Carotenoides/química , Carotenoides/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/farmacologia , Extratos Vegetais/químicaRESUMO
The effect of different tumbling marination treatments (control group, CG; conventional static marination, SM; vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) on the quality characteristics of prepared pork chops was investigated under simulated commercial conditions. The CT treatment increased (p<0.05) the pH value, b* value, product yield, tenderness, overall flavor, sensory juiciness and overall acceptability in comparison to other treatments for prepared boneless pork chops. The CT treatment decreased (p<0.05) cooking loss, shear force value, hardness, gumminess and chewiness compared with other treatments. In addition, CT treatment effectively improved springiness and sensory color more than other treatments. However, IT treatment achieved the numerically highest (p<0.05) L* and a* values. These results suggested that CT treatment obtained the best quality characteristics of prepared pork chops and should be adopted as the optimal commercial processing method for this prepared boneless pork chops.
RESUMO
The rising health consciousness of consumers has resulted in multiple studies on the use of animal and vegetable proteins in gluten-free noodle production, but chicken breast meat (CBM) has not been the subject of such studies. Thus, we aimed to create protein-fortified gluten-free noodles using economical and nutritious CBM and compare their quality attributes with commonly used wheat flour noodles (WN). Among the CBM noodles (CN), CN with tapioca starch (CN-T) showed the highest sensory and textural similarity to WN. The color values of cooked noodles were not considerably different. The water absorption capacity and volume expansion ratio of CN-T were not significantly different from those of WN. In CNs, an ungelatinized microstructure was observed, and CN-T displayed well-formed structural bonds related to adhesiveness, similar to WN. The CN-T had a protein content about 2% higher than WN. This finding is informative for the development of gluten-free noodles using CBM.
RESUMO
This study aimed to evaluate the changes in imported beef loin before and after cooking, depending on cooking methods, through quality characteristics, biogenic amine (BA) content analysis, and electronic tongue system. Sous-vide (SV), characterized by the least cooking loss, exhibited the highest water content at 64.11%. Pan-grilling (PG), air-frying (AF), and IR-grilling (IR) methods showed a range of water content from 46.90 to 54.19%. In the taste results by the electronic tongue, umami and saltiness were higher in the high cooking temperature methods (PG, AF, IR, and combined sous-vide + pan-grilling [SVP]) than SV (p < 0.05). Compared to the control, total BAs concentrations decreased by 67.32% (SV), 64.90% (AF), 62.46% (IR), and 50.64% (PG), and SVP showed the largest decrease of 68.64% (p < 0.05). Therefore, SVP was considered the most effective cooking method for reducing BAs and maintaining the quality characteristics of beef loin. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01650-9.
RESUMO
This study investigated the effects of ethanol (0 %â¼6%) on the dough mechanical properties and quality characteristics of fresh noodles and elucidated the relationship between the above changes and physicochemical, structural, and molecular properties of gluten. Ethanol reduced the water absorption (from 59.00 % to 52.33 %), stability time (from 8.17 min to 3.33 min) and viscoelasticity of dough, and increased the development time, weakening degree and compliance. Ethanol also decreased the fracture stress of dough sheet, and increased fracture elongation and adhesiveness (from 46.15 g·s to 75.88 g·s). Ethanol decreased the noodles' hardness (from 5347.41 g to 4442.34 g), break force, tensile distance, and water absorption, while cooking loss was increased. SEM and CLSM showed that ethanol destroyed the compactness of internal structure and inhibited the formation of gluten network in noodles. According to the results of SE-HPLC and RP-HPLC, ethanol dissolved part of the gliadin and inhibited the polymerization of protein.
Assuntos
Farinha , Glutens , Farinha/análise , Glutens/química , Qualidade dos Alimentos , Gliadina , Culinária , Água/químicaRESUMO
The emulsion (O/W) may be used as a fat replacer to develop healthier meat analogs. The purpose of this work was to evaluate the effects of oil incorporation methods (direct oil addition and emulsion addition) and oil types [triacylglycerol (TAG) and diacylglycerol (DAG)] on the quality characteristics of peanut protein-based patties crosslinked by transglutaminase (TGase). The patties formulated with emulsions showed larger texture parameters (springiness, cohesiveness and gumminess), lower cooking loss and higher acceptability compared with directly adding oil. The rheological results confirmed that the presence of emulsions strengthened the gel structure in patties, which allowed the patties containing emulsions to stabilize free water. Whereas, TAG-based emulsion was more effective than DAG-based emulsion in improving quality of products, possibly because the competitive adsorption at oil-water interface of DAG reduced the crosslinking between the interfacial protein and adjacent protein molecules. This study revealed the relationship between the acylglycerol type in emulsion and the patty quality, providing a reference for the development of plant-based patties.
Assuntos
Arachis , Glicerídeos , Azeite de Oliva , Emulsões/química , Água/químicaRESUMO
Heat treatment is a widely applied technique in the preservation of fruits and vegetables, effectively addressing issues such as disease management, rot prevention, and browning. In this study, we investigated the impact of heat treatment at 35 °C for 24 h on the quality characteristics and disease resistance of two sweet potato varieties, P32/P (Ipomoea batatas (L.) Lam. cv 'Pushu13') and Xinxiang (Ipomoea batatas (L.) Lam. cv 'Xinxiang'). The growth in vitro and reproduction of Rhizopus stolonifer were significantly inhibited at 35 °C. However, it resumed when returned to suitable growth conditions. The heat treatment (at 35 °C for 24 h) was found to mitigate nutrient loss during storage while enhancing the structural characteristics and free radical scavenging capacity of sweet potato. Additionally, it led to increased enzyme activities for APX, PPO, and POD, alongside decreased activities for Cx and PG, thereby enhancing the disease resistance of sweet potato against soft rot. As a result, the heat treatment provided a theoretical basis for the prevention of sweet potato soft rot and had guiding significance for improving the resistance against sweet potato soft rot.
RESUMO
The purpose of this research was to examine the effectiveness of pre-cooking treatments on the quality characteristics of ready-to-eat (RTE) empal gentong. Raw beef meat was pre-cooked in water bath at 90°C for 0 min (C), 10 min (T1), 20 min (T2), and 30 min (T3) prior to retorting process at 121°C and pressure at 70,000 Pa. Results showed that pre-cooking treatments in all treated samples could reduce fat contents in empal gentong's meat by 0.02% (T1), 0.28% (T2), and 1.13% (T3) respectively. Highest precooking time tends to increase the pH and CIE a* values. However, CIE b* values, water holding capacity, and sensory analysis were not affected by pre-cooking duration which must have been affected by sterilization process after pre-cooking. In conclusion, pre-cooking treatment before sterilization in producing empal gentong is a probable technique to reduce its fat content and improve its physical quality. A specific treatment at 90°C for 10 min is recommended to achieve optimum quality of RTE empal gentong's meat.
RESUMO
Dongxiang tribute sheep have a history of use in food dishes such as "Dongxiang Handgrip," which dates back hundreds of years and is a favorite halal food in northwestern China. However, little is known about the mutton quality characteristics of Dongxiang tribute sheep. Here, we measured the sensory characteristics, nutritional quality, and flavor substances to comprehensively evaluate the mutton quality characteristics of these sheep. The mutton qualities of Dongxiang tribute, Tibetan, Ujumqin, and Hu sheep were comprehensively evaluated by membership function. Subsequently, the volatile components in mutton samples from 30 Dongxiang tribute sheep were detected via gas chromatography and ion mobility spectrometry (GC-IMS), and their fingerprints were established. The result of meat quality revealed that the shear force, the contents of protein, essential amino acid (EAA), non-essential amino acid (NEAA), and n-6/n-3 ratio of Dongxiang tribute mutton were better than the other three breeds. Membership functions were calculated for 10 physical and chemical indexes of mutton quality, and the comprehensive membership function values of the four breeds in order of highest to lowest mutton quality were Tibetan sheep (0.76) > Dongxiang tribute sheep (0.49) > Hu sheep (0.46) > Ujumqin sheep (0.33). Thirty volatile compounds were identified via GC-IMS: seven alcohols, eight aldehydes, five ketones, two esters, two phenols, one ether, one furan, one acid, two hydrocarbons, and one pyrazine. Ketones, aldehydes, and alcohols were the main volatile compounds forming the flavor of Dongxiang tribute sheep mutton. The reliability of the results was validated by PCA (principal component analysis) and similarity analyses. Our results provide reference value for consumers of mutton in China.
RESUMO
Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
RESUMO
ABSTRACT: Potato, the third most important food crop worldwide, is rich in nutrients but low in protein. In contrast, milk is rich in protein. Yogurt produced through the cofermentation of potatoes and milk is a highly nutritious food. The quality and shelf life of yogurt are important topics in the dairy industry. The objective of this study was to explore the effect of the addition of essential oil (EO) on the shelf life and quality of potato yogurt. The antimicrobial effects of several EOs, the effect of perilla leaf EO (PLEO) concentration on potato yogurt, and the volatile flavor components of PLEO and PLEO potato yogurt were evaluated. The effects of storage time and temperature on the pH, microbial counts, and sensory characteristics of PLEO potato yogurt also were analyzed to establish a shelf-life model. PLEO had an antimicrobial effect and was the appropriate EO for use in the potato yogurt. A total of 69 compounds were detected in PLEO, and limonene was the main compound. PLEO had an effect on the pH, sensory characteristics, and viable bacterial counts of potato yogurt during storage. The optimal concentration of added PLEO was 0.04%. PLEO had considerable influence on volatile flavor components, and the consumer acceptance of 0.04% PLEO potato yogurt was higher than that of potato yogurt without PLEO in the later stage of storage. The shelf life of potato yogurt with PLEO was 6 days longer than that of the control yogurt. PLEO also improved the concentrations of active terpene substances in potato yogurt. The prediction models based on pH and sensory scores at 5°C were established as A = A0e0.00323t and A = A0e0.00355t, respectively. Comparison of the accuracy factor and the deviation factor of the models revealed that the sensory prediction model was more accurate than the pH prediction model. The results of this study provide theoretical and data support for the industrial development of yogurt with EOs, including extension and prediction of its shelf life.
Assuntos
Óleos Voláteis , Solanum tuberosum , Aromatizantes , Paladar , IogurteRESUMO
The effect of ultrasound-assisted immersion freezing at 180â¯W (UIF-180) on the microstructure, quality and water distribution of porcine longissimus muscles during frozen storage was evaluated. The size of the ice crystals increased with extended storage time, and UIF-180 samples had a smaller size and uniform distribution of ice crystals. The thawing and cooking losses in the UIF-180 sample were significantly lower than that in air freezing (AF) and immersion freezing (IF) samples (Pâ¯<â¯0.05). AF samples had a higher cutting force at 0â¯days. During the 60-180â¯days of the storage period, the cutting force of UIF-180 samples was significantly higher than that of AF and IF samples (Pâ¯<â¯0.05). Low field-nuclear magnetic resonance results showed that UIF-180 decreased water migration during frozen storage. UIF-180 samples had significantly lower lipid oxidation and higher redness than that of the AF and IF samples (Pâ¯>â¯0.05). Overall, UIF at particular powers is an efficient method in reducing quality deterioration of muscles during long-term frozen storage.
Assuntos
Congelamento , Carne Vermelha/análise , Ondas Ultrassônicas , Animais , Cor , Conservação de Alimentos/métodos , Metabolismo dos Lipídeos , Imageamento por Ressonância Magnética/veterinária , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Oxirredução , Resistência ao Cisalhamento , Suínos , Água/químicaRESUMO
This study identified the suitability of chicken skin and wheat fiber mixture (CSFM) as an optimal fat replacer and its addition levels in reduced fat emulsion-type sausages, also paying heed to quality characteristics. Two CSFM types [CSFM-1 and CSFM-2 (chicken skin:ice:wheat fiber = 5:3:2 or 3:5:2, respectively)] were added at 0, 5, 10, 15, and 20% (w/w) as fat replacer. As the addition level increased, higher moisture and lower fat content were observed in the sausage samples without protein content loss (P < 0.05). Emulsion stability and pH were not significantly affected. Replacement with CSFM-2 at levels exceeding 15% significantly reduced cooking yield. While partial change in instrumental color was observed depending on replacer type and addition level, the panel did not detect the same. Hardness increased significantly with increasing addition levels. The panel detected decreased tenderness at 20% and 10 to 20% CSFM-1 and CSFM-2, respectively (P < 0.05). Twenty percent CSFM-1 and >10% CSFM-2 additions induced significant decrease in overall acceptability compared to the control. Thus, CSFM can be used as a fat replacer in reduced fat emulsion-type sausages at addition levels of 15% CSFM-1 (7.5% chicken skin, 4.5% water, and 3% wheat fiber based on total weight of meat batter) or 5% CSFM-2 (1.5% chicken skin, 2.5% water, and 1% wheat fiber based on total weight of meat batter).
Assuntos
Galinhas , Fibras na Dieta/análise , Produtos da Carne/análise , Pele , Animais , Cor , Culinária , Emulsões/química , Manipulação de Alimentos , Dureza , Humanos , Suínos , Paladar , TriticumRESUMO
Various adjuncts, including fruits, are added for flavoring beer, one of the most famous beverages in the world. The influence of persimmon fruit on antioxidant activities and quality characteristics of beer was investigated in this study. The antioxidant activities measured through DPPH and superoxide and hydroxyl anions scavenging potentials as well as total polyphenol contents of the persimmon-treated beer were significantly (p < 0.05) high compared to the control. The mineral elements Mg, K, and Ca were also significantly (p < 0.05) increased, however toxic heavy metals were not detected in the persimmon beer. Among the persimmon beer samples, the overall acceptance value was significantly (p < 0.05) high when the beer was prepared by adding 150 g of the fruit in 10 L of water. The results suggested that an addition of 150 g of persimmon fruit per 10 L of water could better enrich the nutritional, organoleptic, and antioxidant potentials of beer.
RESUMO
This study was conducted to investigate the effect of duck skin on cooking loss, emulsion stability, pH, color, protein solubility, texture profile analysis (TPA), apparent viscosity, and sensory characteristics of press type duck ham with different ratio of duck breast meat and duck skin. Five duck ham formulations were produced with the following compositions: T1 (duck breast 70% + duck skin 30%), T2 (duck breast 60% + duck skin 40%), T3 (duck breast 50% + duck skin 50%), T4 (duck breast 40% + duck skin 60%), and T5 (duck breast 30% + duck skin 70%). The cooking loss and fat separation were lower in T1, and the total expressible fluid separations were lower in T1 and T2 than others. The pH ranged from 6.48 to 6.59, with the highest values in T4 and T5. T5 had the highest CIE L*-value, and T1 and T2 had the highest CIE a*-values; however, CIE b*-values did not differ significantly between the duck ham samples. The protein solubility and TPA (hardness, springiness, cohesiveness, gumminess, and chewiness) were the highest in T1. T1 and T2 had higher scores for color, tenderness, and overall acceptability. T1, T2, and T3 showed significantly higher values, but there were no significant differences for flavor and juiciness. Regarding apparent viscosity properties, T1 and T2 had higher viscosity values than the other formulations. In conclusion, the T1 (duck breast 70% + duck skin 30%) and T2 (duck breast 60% + duck skin 40%) duck hams show the highest quality characteristics.
RESUMO
The aim of this work was to study the influence of the binary and ternary combinations of bovine plasma proteins (BPP), inulin (I) and κ-carrageenan (C) in the overall quality of fat-reduced sausages. The influence of these components over different properties (chemical composition, weight loss after cooking, emulsion stability, texture profile and sensory analysis of fat-reduced sausages) was studied and compared against two samples, one without fat reduction and another a fat-reduced sample without addition of texturing agents. In this sense, a full factorial experimental design of two levels with central point was used. The samples containing BPP+I and BPP+C showed a synergy in which the binary combinations presented higher values of moisture and protein content than the samples containing the individual components. The reduction of fat content increases the values of hardness and decreases the values of springiness. Samples with 5% BPP (w/w) and binary combinations of BPP+C and BPP+I had the best stability values (low total fluid loss), demonstrating a significant synergistic effect by combining BPP+C. Similar results were obtained from the study of weight loss after cooking. However, both studies showed a destabilization of the sample BPP+I+C as emulsion stability decreased and weight loss increased after cooking compared to binary combinations ( P < 0.05). Samples with a binary combination of BPP+C and BPP+I do not present a statistically significant difference in the chewiness with respect to a not-fat-reduced commercial sample ( P > 0.05). The less acceptable sample for flavor and texture was the one containing only BPP. However, when BPP combined with I or C, a major acceptability was obtained, demonstrating the synergistic effect of these binary combinations. Therefore, our studies revealed that the binary combinations of BPP with I or C are good alternatives for the development of fat-reduced sausage.
Assuntos
Proteínas Sanguíneas/química , Carragenina/química , Substitutos da Gordura/química , Inulina/química , Produtos da Carne/análise , Animais , Bovinos , Cor , Culinária , Gorduras na Dieta/análise , Emulsões/química , Análise de Alimentos/métodos , Manipulação de Alimentos/métodos , Dureza , Sensação , Paladar , Água/análiseRESUMO
This study evaluated effects of swelled pig skin (SPS) with various natural vinegars (Bokbunja, brown rice, cider, and lemon vinegars) on the quality of the Korean traditional blood sausages. Adding SPS with various natural vinegars resulted in increased moisture content, cooking loss, L* values, and a* values and decreases in fat, protein content (p<0.05), hardness and thiobarbituric acid-reactive substance values in the meat product samples compared to those in the control. Treatments containing SPS with various natural vinegars decreased the warmed-over flavor but increased the tenderness. These results indicate that SPS with various natural vinegars would improve the quality characteristics and inhibit lipid oxidation of traditional Korean blood sausages.
RESUMO
The aim of this study was to examine the effectiveness of pre-cooking conditions on the quality characteristics of ready-to-eat (RTE) Samgyetang. Raw chickens were steamed under the different conditions of 50â/30 min (T1), 65â/30 min (T2), 85â/30 min (T3), and 90â/10 min (T4) prior to retorting at 120â for 65 min. The results showed that pre-cooking conditions in all treated samples could reduce fat contents in breast and leg meats by 8.5-11.7% and 10.0-11.0% compared to the control, even though there were no significant differences among treatments (p>0.05). The L* and b* values of breast and leg meats treated with the higher temperature and longer time conditions were significantly higher than the control (p<0.05), while a* values tended to decrease despite of not to a significant extent (p>0.05). Moreover, apparent viscosity and water soluble protein showed insignificant differences (p>0.05) among the samples as a result of the retorting process, which might have more negative influences on the quality. T2 samples obtained significantly the highest average Quantitative Descriptive Analysis (QDA) score and transmittance value, representing the most clear broth among the samples, compared to the control. On the other hand, T3 showed the highest cooking loss among the treatments and the lowest QDA scores among the samples. In conclusion, pre-cooking treatment prior to retorting in manufacturing Samgyetang is a plausible way to reduce its fat content. A pre-cooking condition at either 65â for 30 min, or 90â for 10 min are recommended for producing Samgyetang with optimum quality.