Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem Biophys Res Commun ; 724: 150243, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857558

RESUMO

Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Percepção de Quorum , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Humanos , Animais , Bactérias/metabolismo
2.
J Environ Manage ; 366: 121867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032259

RESUMO

Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar. Results showed that the co-addition of separated biochar and AHL achieved best methane production performance, with the maximal methane yield of 154.7 mL/g volatile suspended solids, which increased by 51.9%, 47.2%, 17.9%, and 39.4% respectively compared to that of control, AHL-loaded biochar, sole AHL, and sole biochar groups. The reason was that the co-addition of separated biochar and AHL promoted the stages of hydrolysis and acidification, promoting the conversion of organic matters and short-chain fatty acids, and optimizing the accumulation of acetate acid. Moreover, the methanogenesis stage also performed best among experimental groups. Correspondingly, the highest activities of electron transfer and coenzyme F420 were obtained, with increase ratios of 33.2% and 27.2% respectively compared to that of control. Furthermore, biochar did more significant effects on the evolution of microbial communities than AHL, and the direct interspecific electron transfer between fermentative bacteria and methanogens were possibly promoted.


Assuntos
Carvão Vegetal , Metano , Percepção de Quorum , Metano/metabolismo , Anaerobiose , Esgotos , Ácidos Graxos Voláteis/metabolismo , Acil-Butirolactonas/metabolismo
3.
BMC Microbiol ; 23(1): 251, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684571

RESUMO

BACKGROUND: Farnesol is a Candida-secreted quorum-sensing molecule of great interest as a potential antifungal agent for serious and hardly curable infections-candidiasis, especially vulvovaginal candidiasis (VVC). METHODS: The effect of farnesol on cellular morphology and viability and evaluated the production of Th1 (IL-2), Th2 (IL-4), proinflammatory (IL-6), chemotactic (IL-8), and Th17 (IL-17) cytokines in the culture supernatants of vaginal epithelial cell line (VK2) were evaluated. Moreover, we tested the inhibitory effect of farnesol on C. albicans adhesion. Scanning electron microscopy was conducted to observe any VK2 cell ultrastructural changes. RESULTS: Only low concentrations (≤ 50 µmol/L) of farnesol did not affect the morphology and viability of the VK2 cells (P > 0.05). Farnesol reduced the adhesion of C. albicans to the VK2 cells. When treated with farnesol, statistical elevated levels of both IL-4 and IL-17 secreted by the infected VK2 cells were present in the culture supernatants (P < 0.05). CONCLUSIONS: Farnesol acts as a stimulator to up-regulate the Th17-type innate immune response, as well as Th2-type humoral immunity following C. albicans infection. Further research is required to select the optimal therapeutic dose to develop efficacious and safe mucosal immune adjuvant for treating VVCs.


Assuntos
Candida albicans , Farneseno Álcool , Farneseno Álcool/farmacologia , Interleucina-17 , Interleucina-4 , Imunidade Inata , Células Epiteliais
4.
Environ Sci Technol ; 57(47): 18491-18498, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222552

RESUMO

The halogenation of quorum sensing molecules (QSMs) is known to be catalyzed by enzymes such as haloperoxidase (HPO) as well as cerium dioxide nanocrystals (NC), which mimic enzymes. Those enzymes and mimics can influence biological processes such as biofilm formation, where bacteria use QSMs for the "chemical" communication between each other and the coordination of surface colonization. However, not much is known about the degradation behavior of a broad spectrum of QSMs, especially for HPO and its mimics. Therefore, in this study, the degradation of three QSMs with different molecule moieties was elucidated. For this purpose, different batch experiments were carried out with HPOs, NCs and free active bromine (FAB). For N-ß-ketocaproyl-homoserine lactone (3-Oxo-C6-AHL), N-cis-tetradec-9Z-enoyl-homoserine lactone (C14:1-AHL) and 2-heptyl-4-quinolone (HHQ) a fast degradation and moiety-specific transformations were observed. The HPO vanadium bromoperoxidase as well as cerium dioxide NCs catalyzed the formation of the same brominated transformation products (TPs). Since the same TPs are formed in batch experiments with FAB it is very likely that FAB is playing a major role in the catalytical reaction mechanism leading to the transformation of QSMs. In this study in total 17 TPs could be identified in different levels of confidence and the catalytic degradation processes for two QS groups (unsaturated AHLs and alkyl quinolones) with cerium dioxide NCs and vanadium bromoperoxidase were expanded.


Assuntos
Halogenação , Percepção de Quorum , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Bactérias/metabolismo , Bromo
5.
J Basic Microbiol ; 63(10): 1073-1084, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357952

RESUMO

Quorum sensing (QS) is a communication mechanism between microorganisms originally found in bacteria. In recent years, an important QS mechanism has been discovered in the field of fungi, namely, the lipoxygenase compound oxylipin of arachidonic acid acts as a QS molecule in life cycle control, particularly in the sexual and asexual development of fungi. However, the role of oxylipins in mediating eukaryotic communication has not been previously described. In this paper, we review the regulatory role of oxylipins and the underlying mechanisms and discuss the potential for application in major fungi. The role of oxylipin as a fungal quorum-sensing molecule is the main focus of the review. Besides, the quorum regulation of fungal morphological transformation, biofilm formation, virulence factors, secondary metabolism, infection, symbiosis, and other physiological behaviors are discussed. Moreover, future prospectives and applications are elaborated as well.


Assuntos
Fungos , Oxilipinas , Fungos/fisiologia , Percepção de Quorum/fisiologia , Bactérias , Fatores de Virulência
6.
Anal Bioanal Chem ; 413(3): 853-864, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33206214

RESUMO

Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial cultures and plasma from patients with sepsis. We developed two MS analytical methods, based on neutral loss (NL) and product ion (PI) experiments, to identify and characterize unknown AHL and HQ molecules. We then established a multiple-reaction-monitoring (MRM) method to quantify specific QS compounds. We validated the HPLC-MS-based approaches (MRM-NL-PI), and data were in accord with the validation guidelines. With the NL and PI MS-based methods, we identified and characterized 3 and 13 unknown AHL and HQ compounds, respectively, in biological samples. One of the newly found AHL molecules was C12-AHL, first quantified in Pseudomonas aeruginosa bacterial cultures. The MRM quantitation of analytes in plasma from patients with sepsis confirmed the analytical ability of MRM for the quantification of virulence factors during sepsis. Graphical abstract.


Assuntos
Acil-Butirolactonas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Pseudomonas aeruginosa/metabolismo , Quinolonas/análise , Percepção de Quorum , Transdução de Sinais , Acil-Butirolactonas/química , Humanos , Limite de Detecção , Estrutura Molecular , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Quinolonas/química , Reprodutibilidade dos Testes , Sepse/sangue , Sepse/complicações , Sepse/microbiologia , Fatores de Virulência/sangue
7.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899313

RESUMO

Background: Implant-associated infections are still a major complication in the field of orthopedics. Bacteria can form biofilms on implant surfaces, making them more difficult to detect and treat. Since standard antibiotic therapy is often impaired in biofilm infections, particular interest is directed towards finding treatment alternatives. Biofilm-formation is a well-organized process during which bacteria communicate via quorum-sensing molecules (QSM). The aim of this study was to inhibit bacterial communication by directing avian IgY against specific QSM. Methods: Chicken were immunized against the following QSM: (1) AtlE, a member of the autolysin family which mediates attachment to a surface in Staphylococcus epidermidis; (2) GroEL, the bacterial heat shock protein; (3) PIA (polysaccharide intercellular adhesion), which is essential for cell-cell adhesion in biofilms. Staphylococcus epidermidis biofilms were grown and inhibition of biofilm-formation by IgYs was evaluated. Additionally, human osteoblasts were cultivated and biocompatibility of IgYs was tested. Results: We were able to demonstrate that all IgYs reduced biofilm-formation, also without prior immunization. Therefore, the response was probably not specific with regard to the QSM. Osteoblasts were activated by all IgYs which was demonstrated by microscopy and an increased release of IL-8. Conclusions: In conclusion, avian IgY inhibits biofilm-formation, though the underlying mechanism is not yet clear. However, adverse effects on local tissue cells (osteoblasts) were also observed.


Assuntos
Imunoglobulinas/metabolismo , Infecções Relacionadas à Prótese/imunologia , Infecções Relacionadas à Prótese/microbiologia , Percepção de Quorum , Staphylococcus epidermidis/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Galinhas , Humanos , Osteoblastos/metabolismo , Staphylococcus epidermidis/fisiologia
8.
Molecules ; 24(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117232

RESUMO

The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.


Assuntos
Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Percepção de Quorum/genética , Antifúngicos/uso terapêutico , Fungos/patogenicidade , Humanos , Micoses/genética , Micoses/microbiologia , Percepção de Quorum/efeitos dos fármacos
9.
J Invertebr Pathol ; 136: 100-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018146

RESUMO

This investigation documents the expression of the in vivo dimorphic program exhibited by the insect mycopathogen Metarhizium rileyi. This insect mycopathogen represents the key mortality factor regulating various caterpillar populations in legumes, including subtropical and tropical soybeans. Using two hosts and M. rileyi isolates, we have measured M. rileyi growth rates under in vivo and in vitro conditions and have assessed the pathogen's impact on host fitness. Significantly, the hyphal bodies-to-mycelia transition that occurs at the late infection stage is regulated by a quorum-sensing molecule(s) (QSM) that triggers hyphal bodies (Hb) to synchronously switch to the tissue-invasive mycelia. Within hours of this transition, the host insect succumbs to mycosis. The production of the QS chemical(s) occurs when a quorum of Hb is produced in the hemolymph (late-stage infection). Furthermore, the QS activity detected in late-stage infected sera is unique and is unrelated to any known fungal QSM. The lack of similar QS activity from conditioned media of M. rileyi suggests that the chemical signal(s) that mediates the dimorphic switch is produced by host tissues in response to a quorum of hyphal bodies produced in the host hemolymph. The serum-based QS activity is retained after lyophilization, mild heat treatment, and proteinase digestion. However, attempts to extract/identify the QSM have been unsuccessful. Results suggest that the observed hyphal body-to-mycelia transition is a multi-step process involving more than one chemical signal.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Insetos/microbiologia , Metarhizium/crescimento & desenvolvimento , Micoses , Percepção de Quorum/fisiologia , Animais , Hemolinfa/microbiologia , Hifas/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento
10.
J Basic Microbiol ; 56(5): 440-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26972663

RESUMO

When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.


Assuntos
Apoptose/fisiologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Farneseno Álcool/metabolismo , Percepção de Quorum/fisiologia , Aspergillus niger/fisiologia , Candida albicans/fisiologia , Fusarium/fisiologia , Hifas/crescimento & desenvolvimento , Indóis/metabolismo , Morfogênese , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-39113638

RESUMO

Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.

12.
Gut Microbes ; 16(1): 2327409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488630

RESUMO

The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Encéfalo/fisiologia , Sistema Nervoso , Inflamação
13.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744663

RESUMO

Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.


Assuntos
Bactérias , Plantas , Percepção de Quorum , Humanos , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Plantas/microbiologia , Acil-Butirolactonas/metabolismo , Fenômenos Fisiológicos Bacterianos , Microbiologia do Solo , Microbiota , Simbiose , Rizosfera
14.
Animals (Basel) ; 13(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048514

RESUMO

Chronic otitis externa of dogs is a significant problem due to the prevalence and complexity of the treatment of such animals. There is evidence that in 60-80% of cases of infectious diseases microorganisms located in the biofilm phenotype play the main role. Microorganisms in the biofilm phenotype have a number of advantages, the most significant of which is considered to be increased resistance to various external factors. Among them, a special place is occupied by resistance to antibiotics. In recent decades, research has been conducted at an increasing scale on the role of biofilm infections in various pathologies in veterinary medicine. The etiology and therapy of dog otitis externa caused by Malassezia pachydermatis biofilm has not been fully studied. This is why we consider relevant the scientific and practical aspects of research on the etiology and therapy of dog otitis externa from the position of biofilm infection. In this work, it has been statistically proven that there is a relationship between the optical density of Malassezia pachydermatis biofilms and their sensitivity to drugs, and this relationship is statistically significant. In addition, we have demonstrated that Farnesol has a good antibiofilm effect at a concentration of more 1.6 µM/mL (24% OD decrease of biofilm), and its highest antibiofilm effect (71-55%-more than a half) was observed at a concentration of 200-12.5 µM/mL.

15.
Adv Drug Deliv Rev ; 198: 114896, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211280

RESUMO

Many human fungal pathogens are opportunistic. They are primarily benign residents of the human body and only become infectious when the host's immunity and microbiome are compromised. Bacteria dominate the human microbiome, playing an essential role in keeping fungi harmless and acting as the first line of defense against fungal infection. The Human Microbiome Project, launched by NIH in 2007, has stimulated extensive investigation and significantly advanced our understanding of the molecular mechanisms governing the interaction between bacteria and fungi, providing valuable insights for developing future antifungal strategies by exploiting the interaction. This review summarizes recent progress in this field and discusses new possibilities and challenges. We must seize the opportunities presented by researching bacterial-fungal interplay in the human microbiome to address the global spread of drug-resistant fungal pathogens and the drying pipelines of effective antifungal drugs.


Assuntos
Microbiota , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Fungos , Bactérias
16.
Front Microbiol ; 14: 1250151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075875

RESUMO

Quorum sensing (QS) is one of the most well-studied cell-to-cell communication mechanisms in microorganisms. This intercellular communication process in Saccharomyces cerevisiae began to attract more and more attention for researchers since 2006, and phenylethanol, tryptophol, and tyrosol have been proven to be the main quorum sensing molecules (QSMs) of S. cerevisiae. In this paper, the research history and hotspots of QS in S. cerevisiae are reviewed, in particular, the QS system of S. cerevisiae is introduced from the aspects of regulation mechanism of QSMs synthesis, influencing factors of QSMs production, and response mechanism of QSMs. Finally, the employment of QS in adaptation to stress, fermentation products increasing, and food preservation in S. cerevisiae was reviewed. This review will be useful for investigating the microbial interactions of S. cerevisiae, will be helpful for the fermentation process in which yeast participates, and will provide an important reference for future research on S. cerevisiae QS.

17.
J Biochem ; 170(6): 775-785, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34557892

RESUMO

In this study, we investigated the activation of TRPV1 and TRPA1 by N-acyl homoserine lactones, quorum sensing molecules produced by Gram-negative bacteria, and the inhibitory effect of TRPV1 and TRPA1 by autoinducing peptides (AIPs), quorum sensing molecules produced by Gram-positive bacteria, using human embryonic kidney 293T cell lines stably expressing human TRPV1 and TRPA1, respectively. As a result, we found that some N-acyl homoserine lactones, such as N-octanoyl-L-homoserine lactone (C8-HSL), N-nonanoyl-L-homoserine lactone (C9-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL), activated both TRPV1 and TRPA1. In addition, we clarified that some N-acyl homoserine lactones, such as N-3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C12-HSL), only activated TRPV1 and N-acyl homoserine lactones having saturated short acyl chain, such as N-acetyl-L-homoserine lactone (C2-HSL) and N-butyryl-L-homoserine lactone (C4-HSL), only activated TRPA1. Furthermore, we found that an AIP, simple linear peptide CHWPR, inhibited both TRPV1 and TRPA1 and peptide having thiolactone ring DICNAYF, the thiolactone ring were formed between C3 to F7, strongly inhibited only the TRPV1. Although the specificity of TRPV1 and TRPA1 for quorum sensing molecules was different, these data suggest that both TRPV1 and TRPA1 would function as receptors for quorum sensing molecule produced by bacteria. Graphical Abstract.


Assuntos
Acil-Butirolactonas/farmacologia , Bactérias Gram-Negativas/química , Percepção de Quorum , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Acil-Butirolactonas/química , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Células HEK293 , Humanos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
18.
J Med Microbiol ; 70(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596013

RESUMO

Introduction. Pseudomonas aeruginosa produces quorum sensing signalling molecules including 2-alkyl-4-quinolones (AQs), which regulate virulence factor production in the cystic fibrosis (CF) airways.Hypothesis/Gap statement. Culture can lead to condition-dependent artefacts which may limit the potential insights and applications of AQs as minimally-invasive biomarkers of bacterial load.Aim. We aimed to use culture-independent methods to explore the correlations between AQ levels and live P. aeruginosa load in adults with CF.Methodology. Seventy-five sputum samples at clinical stability and 48 paired sputum samples obtained at the beginning and end of IV antibiotics for a pulmonary exacerbation in adults with CF were processed using a viable cell separation technique followed by quantitative P. aeruginosa polymerase chain reaction (qPCR). Live P. aeruginosa qPCR load was compared with the concentrations of three AQs (HHQ, NHQ and HQNO) detected in sputum, plasma and urine.Results. At clinical stability and the beginning of IV antibiotics for pulmonary exacerbation, HHQ, NHQ and HQNO measured in sputum, plasma and urine were consistently positively correlated with live P. aeruginosa qPCR load in sputum, compared to culture. Following systemic antibiotics live P. aeruginosa qPCR load decreased significantly (P<0.001) and was correlated with a reduction in plasma NHQ (plasma: r=0.463, P=0.003).Conclusion. In adults with CF, AQ concentrations correlated more strongly with live P. aeruginosa bacterial load measured by qPCR compared to traditional culture. Prospective studies are required to assess the potential of systemic AQs as biomarkers of P. aeruginosa bacterial burden.


Assuntos
4-Quinolonas/isolamento & purificação , Fibrose Cística/complicações , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/isolamento & purificação , Percepção de Quorum , 4-Quinolonas/sangue , 4-Quinolonas/urina , Adolescente , Adulto , Carga Bacteriana , Biomarcadores , Fibrose Cística/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Pseudomonas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Escarro/química , Adulto Jovem
19.
Environ Sci Pollut Res Int ; 28(20): 26182-26186, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33855663

RESUMO

Hydrodynamic cavitation treatment was used for the functional inactivation of quorum-sensing lactone molecules of Pseudomonas aeruginosa. Hydroxyl radicals formed as well as the shear effects during the cavitation process induced the inactivation of the signal molecules through hydrolysis reaction coupled with bacterial destruction. Concentration of two different types of homoserine lactones (HSL) molecules was tested after the treatment at various rotational speeds. It was found that the strongest effects can be achieved at speeds > 2000 rpm. This value is considered as an onset speed of dominant cavitation, and it is in agreement with literature data. The experimental trends were in agreement with the calculations based on the finite element modelling, which show a significant increase in average shear stress at higher rotational speeds. Overall, the work has demonstrated the possible effects of hydrodynamic cavitation on the quorum-sensing molecules of Pseudomonas aeruginosa for the first time.


Assuntos
Pseudomonas aeruginosa , Purificação da Água , 4-Butirolactona , Hidrodinâmica , Lactonas , Percepção de Quorum
20.
J Fungi (Basel) ; 7(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34575768

RESUMO

In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient's course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA