Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Biol Chem ; 299(10): 105192, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625589

RESUMO

Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.


Assuntos
Membranas Intracelulares , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Melanócitos , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Melanócitos/metabolismo , Mutação , Doença de Parkinson/metabolismo , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Expressão Gênica , Domínios Proteicos , Ligação Proteica , Membranas Intracelulares/metabolismo
2.
J Biol Chem ; 299(7): 104879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269951

RESUMO

Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.


Assuntos
Intoxicação por Manganês , Manganês , Camundongos , Humanos , Animais , Manganês/metabolismo , Microglia/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Intoxicação por Manganês/metabolismo , Mutação , Autofagia
3.
EMBO J ; 39(20): e104862, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32853409

RESUMO

Genetic variation in LRRK2 associates with the susceptibility to Parkinson's disease, Crohn's disease, and mycobacteria infection. High expression of LRRK2 and its substrate Rab10 occurs in phagocytic cells in the immune system. In mouse and human primary macrophages, dendritic cells, and microglia-like cells, we find that Rab10 specifically regulates a specialized form of endocytosis known as macropinocytosis, without affecting phagocytosis or clathrin-mediated endocytosis. LRRK2 phosphorylates cytoplasmic PI(3,4,5)P3-positive GTP-Rab10, before EEA1 and Rab5 recruitment to early macropinosomes occurs. Macropinosome cargo in macrophages includes CCR5, CD11b, and MHCII, and LRRK2-phosphorylation of Rab10 potently blocks EHBP1L1-mediated recycling tubules and cargo turnover. EHBP1L1 overexpression competitively inhibits LRRK2-phosphorylation of Rab10, mimicking the effects of LRRK2 kinase inhibition in promoting cargo recycling. Both Rab10 knockdown and LRRK2 kinase inhibition potently suppress the maturation of macropinosome-derived CCR5-loaded signaling endosomes that are critical for CCL5-induced immunological responses that include Akt activation and chemotaxis. These data support a novel signaling axis in the endolysosomal system whereby LRRK2-mediated Rab10 phosphorylation stalls vesicle fast recycling to promote PI3K-Akt immunological responses.


Assuntos
Proteínas de Transporte/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/metabolismo , Fagócitos/imunologia , Pinocitose/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Quimiocina CCL5/farmacologia , Quimiotaxia/genética , Células Dendríticas/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Macrófagos/efeitos dos fármacos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mutação , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Fosforilação , Pinocitose/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/genética
4.
J Lipid Res ; 63(8): 100248, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753407

RESUMO

The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Endocitose , Endossomos , Hepatócitos , Lipoproteínas LDL , Receptores de LDL , Receptores da Transferrina , Transferrina , Proteínas rab de Ligação ao GTP
5.
J Biol Chem ; 296: 100190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334886

RESUMO

Once internalized, receptors reach the sorting endosome and are either targeted for degradation or recycled to the plasma membrane, a process mediated at least in part by tubular recycling endosomes (TREs). TREs may be efficient for sorting owing to the ratio of large surface membrane area to luminal volume; following receptor segregation, TRE fission likely releases receptor-laden tubules and vesicles for recycling. Despite the importance of TRE networks for recycling, these unique structures remain poorly understood, and unresolved questions relate to their lipid and protein composition and biogenesis. Our previous studies have depicted the endocytic protein MICAL-L1 as an essential TRE constituent, and newer studies show a similar localization for the GTP-binding protein Rab10. We demonstrate that TREs are enriched in both phosphatidic acid (PA) and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), supporting the idea of MICAL-L1 recruitment by PA and Rab10 recruitment via PI(4,5)P2. Using siRNA knock-down, we demonstrate that Rab10-marked TREs remain prominent in cells upon MICAL-L1 or Syndapin2 depletion. However, depletion of Rab10 or its interaction partner, EHBP1, led to loss of MICAL-L1-marked TREs. We next used phospholipase D inhibitors to decrease PA synthesis, acutely disrupt TREs, and enable monitoring of TRE regeneration after inhibitor washout. Rab10 depletion prevented TRE regeneration, whereas MICAL-L1 knock-down did not. It is surprising that EHBP1 depletion did not affect TRE regeneration under these conditions. Overall, our study supports a primary role for Rab10 and the requirement for PA and PI(4,5)P2 in TRE biogenesis and regeneration, with Rab10 likely linking the sorting endosome to motor proteins and the microtubule network.


Assuntos
Endossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Membrana Celular/metabolismo , Células Cultivadas , Endocitose , Humanos , Proteínas de Transporte Vesicular/metabolismo
6.
J Biol Chem ; 296: 100637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872597

RESUMO

TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis-Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 µM) and Thr649 (KM ∼25 µM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 µM), Ser711 (KM ∼79 µM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminopeptidases/genética , Animais , Proteínas Ativadoras de GTPase/genética , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
7.
EMBO J ; 37(1): 1-18, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29212815

RESUMO

Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector-binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans-Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild-type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29-mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2-mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation.


Assuntos
Fibroblastos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Fibroblastos/citologia , Células HEK293 , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson , Fosforilação , Transdução de Sinais , Proteínas rab de Ligação ao GTP , Proteínas rab1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rab1 de Ligação ao GTP/genética
8.
J Cell Sci ; 133(7)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041903

RESUMO

Cells in situ are often polarized and have multiple plasma membrane domains. To establish and maintain these domains, polarized transport is essential, and its impairment results in genetic disorders. Nevertheless, the underlying mechanisms of polarized transport have not been elucidated. Drosophila photoreceptor offers an excellent model for studying this. We found that Rab10 impairment significantly reduced basolateral levels of Na+K+ATPase, mislocalizing it to the stalk membrane, which is a domain of the apical plasma membrane. Furthermore, the shrunken basolateral and the expanded stalk membranes were accompanied with abnormalities in the Golgi cisternae of Rab10-impaired retinas. The deficiencies of Rab10-GEF Crag or the Rab10 effector Ehbp1 phenocopied Rab10 deficiency, indicating that Crag, Rab10 and Ehbp1 work together for polarized trafficking of membrane proteins to the basolateral membrane. These phenotypes were similar to those seen upon deficiency of AP1 or clathrin, which are known to be involved in the basolateral transport in other systems. Additionally, Crag, Rab10 and Ehbp1 colocalized with AP1 and clathrin on the trans-side of Golgi stacks. Taken together, these results indicate that AP1 and clathrin, and Crag, Rab10 and Ehbp1 collaborate in polarized basolateral transport, presumably in the budding process in the trans-Golgi network.


Assuntos
Adenosina Trifosfatases , Drosophila , Animais , Membrana Celular/metabolismo , Drosophila/metabolismo , Complexo de Golgi/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Rede trans-Golgi/metabolismo
9.
Angiogenesis ; 24(4): 789-805, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33956260

RESUMO

Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.


Assuntos
Colágeno Tipo IV , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Membrana Basal , Colágeno Tipo IV/genética , Células Endoteliais , Morfogênese
10.
J Cell Sci ; 132(5)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30700496

RESUMO

Recycling endosomes are stations that sort endocytic cargoes to their appropriate destinations. Tubular endosomes have been characterized as a recycling endosomal compartment for clathrin-independent cargoes. However, the molecular mechanism by which tubular endosome formation is regulated is poorly understood. In this study, we identified Rab10 as a novel protein localized at tubular endosomes by using a comprehensive localization screen of EGFP-tagged Rab small GTPases. Knockout of Rab10 completely abolished tubular endosomal structures in HeLaM cells. We also identified kinesin motors KIF13A and KIF13B as novel Rab10-interacting proteins by means of in silico screening. The results of this study demonstrated that both the Rab10-binding homology domain and the motor domain of KIF13A are required for Rab10-positive tubular endosome formation. Our findings provide insight into the mechanism by which the Rab10-KIF13A (or KIF13B) complex regulates tubular endosome formation. This article has an associated First Person interview with the first author of the paper.


Assuntos
Endossomos/metabolismo , Cinesinas/metabolismo , Biogênese de Organelas , Proteínas rab de Ligação ao GTP/metabolismo , Endocitose , Endossomos/ultraestrutura , Técnicas de Inativação de Genes , Células HeLa , Humanos , Ligação Proteica , Proteínas rab de Ligação ao GTP/genética
11.
Cancer Cell Int ; 21(1): 534, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645466

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most common cancers and the leading cause of death in women. Previous studies have demonstrated that FAM49B is implicated in several tumor progression, however, the role and mechanism of FAM49B in BC remain to be explored. Therefore, in this study, we aimed to systematically study the role of FAM49B in the proliferation, metastasis, apoptosis, and chemoresistance of BC, as well as the corresponding molecular mechanisms and downstream target. METHODS: The ONCOMINE databases and Kaplan-Meier plotter databases were analyzed to find FAM49B and its prognostic values in BC. FAM49B expression in BC and adjacent non-tumor tissues was detected by western blot and IHC. Kaplan-Meier analysis was used to identify the prognosis of BC patients. After FAM49B knockdown in MCF-7 and MDA-MB-231 cells, a combination of co-immunoprecipitation, MTT, migration, and apoptosis assays, nude mouse xenograft tumor model, in addition to microarray detection and data analysis was used for further mechanistic studies. RESULTS: In BC, the results showed that the expression level of FAM49B was significantly higher than that in normal breast tissue, and highly expression of FAM49B was significantly positively correlated with tumor volume, histological grade, lymph node metastasis rate, and poor prognosis. Knockdown of FAM49B inhibited the proliferation and migration of BC cells in vitro and in vivo. Microarray analysis revealed that the Toll-like receptor signaling pathway was inhibited upon FAM49B knockdown. In addition, the gene interaction network and downstream protein validation of FAM49B revealed that FAM49B positively regulates BC cell proliferation and migration by promoting the Rab10/TLR4 pathway. Furthermore, endogenous FAM49B interacted with ELAVL1 and positively regulated Rab10 and TLR4 expression by stabilizing ELAVL1. Moreover, mechanistic studies indicated that the lack of FAM49B expression in BC cells conferred more sensitivity to anthracycline and increased cell apoptosis by downregulating the ELAVL1/Rab10/TLR4/NF-κB signaling pathway. CONCLUSION: These results demonstrate that FAM49B functions as an oncogene in BC progression, and may provide a promising target for clinical diagnosis and therapy of BC.

12.
J Neurooncol ; 154(3): 285-299, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34478013

RESUMO

PURPOSE: Aberrant expression of long noncoding RNAs plays a pivotal role in tumorigenesis. Recently, several studies have showed that the LINC00152 gene is upregulated in a variety of tumors and plays an oncogene role; however, its underlying molecular mechanisms in glioblastoma remain unclear. In this study, we prepare to investigate the biological role and underlying molecular mechanisms of LINC00152 in glioblastoma cells. METHODS: Bioinformatics analysis to identify LINC00152 expression, Cell Counting kit-8 assay and Colony formation assay were used to evaluate proliferation, Flow cytometric analysis was used to evaluate apoptosis, Cell Matrigel invasion assay and Wound healing assay was used to evaluate invasion, Western blot analysis to check protein expression level, Mouse xenograft models was used to check cell proliferation in vivo. RESULTS: In this study, we found that LINC00152 was upregulated in gliomas and its expression was significantly associated with high tumor aggressiveness and poor outcomes for glioma patients. Functionally, the knockdown of LINC00152 not only inhibited malignant behaviors of glioma, such as proliferation and invasion of glioma cells and induced apoptosis in vitro but also suppressed tumorigenesis in vivo. Mechanistically, results of the bioinformatics analysis and experimental studies confirmed that LINC00152 and RAB10 as the targets of miR-107, and LINC00152 might act as a sponge for miR-107 to regulate the expression of RAB10 in glioblastoma. Additionally, silencing miR-107 reversed the effects induced by LINC00152 knockdown on glioblastoma cells both in vitro and in vivo. CONCLUSION: Our data suggested that LINC00152 is a candidate prognostic marker of glioma, and that the LINC00152/MIR-107/RAB10 axis plays a pivotal role in regulation of the glioma malignancy, and therefore, targeting the axis might be an effective therapeutic strategy to treat glioma.


Assuntos
Glioblastoma , Glioma , Animais , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioma/genética , Humanos , Camundongos , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Proteínas rab de Ligação ao GTP
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1044-1054, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34110382

RESUMO

Growing evidence has indicated that the long noncoding RNA (lncRNA) CYTOR is involved in the initiation and progression of malignancies, including gastric cancer. Nevertheless, the mechanisms of CYTOR in gastric cancer development are not fully understood. In the present study, we aimed to clarify the association of CYTOR, miR-103, and RAB10 in gastric cancer progression. We found that CYTOR expression was increased in metastatic gastric cancer biopsies compared with that in primary samples. CYTOR expression was significantly positively correlated with the invasiveness, lymph node metastasis, and advanced stages of gastric cancer. In addition, downregulation of CYTOR expression hampered cell proliferation and migration but induced cell apoptosis. Furthermore, CYTOR sponged miR-103 and diminished miR-103 expression, thus rescuing oncogene RAB10 expression. Knockdown of CYTOR suppressed tumor growth in human BGC823 mouse models. These findings suggest that the CYTOR/miR-103/RAB10 axis is a novel signaling pathway that facilitates gastric cancer progression. CYTOR-targeted interventions provide a rationale to improve therapies targeting gastric cancer progression.


Assuntos
Proliferação de Células , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas rab de Ligação ao GTP/genética
14.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769390

RESUMO

MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.


Assuntos
Movimento Celular , Células Germinativas/fisiologia , MicroRNAs/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proliferação de Células , Células Germinativas/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genética
15.
Cancer Cell Int ; 20: 368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774162

RESUMO

BACKGROUND: As one of the most common gynaecological malignant tumors, cervical cancer (CC) has become an important public health issue. Emerging evidence has revealed long non-coding RNAs (lncRNAs) are crucial regulators of biological functions in cancers, including CC. And the oncogenic role of LINC00441 has been verified in hepatocellular carcinoma (HCC). But the molecular mechanism and biological functions of LINC00441 in CC remain unknown. METHODS: qRT-PCR analysis detected the expression of genes in CC tissues or cells. CCK-8, colony formation, flow cytometry, transwell, western blot assays as well as animal studies were conducted to analyze the function of LINC00441 in CC. Luciferase reporter, RIP and RNA pull down assays were applied to verify the binding relations among the indicated genes. RESULTS: LINC00441 was upregulated in CC tissues and cells. Further, LINC00441 depletion repressed cell proliferation and motility in vitro as well as tumor growth in vivo. LINC00441 could sponge miR-450b-5p to upregulate RAB10 expression. Finally, miR-450b-5p inhibitor or RAB10 upregulation counteracted LINC00441 knockdown-mediated function on the development of CC. CONCLUSIONS: LINC00441 drives CC progression by targeting miR-450b-5p/RAB10 axis, which might provide new idea for researching CC-related molecular mechanism.

16.
Cell Mol Biol (Noisy-le-grand) ; 66(7): 197-201, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33287942

RESUMO

Ovarian cancer is a leading cause of gynecological cancer-related mortality. It has been reported that miR-409-3p is involved in the proliferation and migration of cancer cells. However, the role of miR-409-3p in ovarian cancer has not been well studied. The present study aimed to investigate the functional role of miR-409-3p in the pathogenesis of ovarian cancer, and its potential mechanism. It was found that the expression levels of miR-409-3p in 6 ovarian cancer tissues were upregulated. Through proliferation, migration and colony formation assays, it was revealed that overexpression of miR-409-3p inhibited the proliferation and migration of ovarian cancer cells. It was predicted from bioinformatics assays that the complementary binding sites were within miR-409-3p and Rab10. It was also demonstrated that the downregulation of the expression of Rab10 reversed the miR-409-3p downregulation-induced abnormal proliferation of ovarian cancer cells. These results suggest that miR-409-3p expression can be used as a predictive marker for the prognosis of ovarian cancer. Thus, the miR-409-3p/Rab10 axis may be a novel therapeutic target for ovarian cancer.


Assuntos
Movimento Celular/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Metástase Neoplásica , Proteínas rab de Ligação ao GTP/genética
17.
Clin Exp Pharmacol Physiol ; 47(7): 1283-1290, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012318

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a major type of esophageal cancer, accounting for about 90% of cases. Circular RNA UBAP2 (circUBAP2) is involved in the progression of several types of cancers. However, the role of circUBAP2 in ESCC remains unclear. In the present study, circUBAP2 expression was found to be upregulated in ESCC tumour tissues. Knockdown of circUBAP2 through infection with lentiviral vector encoding shRNA targeting circUBAP2 (sh-circUBAP2) inhibited the proliferation, migration and invasion of ESCC cells. In addition, circUBAP2 significantly promoted the proliferation, migration and invasion of ESCC cells. In vivo xenograft assay demonstrated that circUBAP2 downregulation suppressed the tumour growth of ESCC. Further mechanism investigations proved that circUBAP2 exerted its role via sponging microRNA (miR)-422a, and miR-422a directly targeted Rab10 in ESCC cells. These findings suggested that circUBAP2 acted as oncogene through regulating the miR-422a/Rab10 axis in ESCC.


Assuntos
Carcinoma de Células Escamosas do Esôfago/patologia , Técnicas de Silenciamento de Genes , MicroRNAs/genética , RNA Circular/genética , Proteínas rab de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Invasividade Neoplásica/genética
18.
Biochem J ; 476(3): 559-579, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30670570

RESUMO

The Parkinson's disease (PD) protein leucine-rich repeat kinase 2 (LRRK2) exists as a mixture of monomeric and dimeric species, with its kinase activity highly concentrated in the dimeric conformation of the enzyme. We have adapted the proximity biotinylation approach to study the formation and activity of LRRK2 dimers isolated from cultured cells. We find that the R1441C and I2020T mutations both enhance the rate of dimer formation, whereas, the G2019S kinase domain mutant is similar to WT, and the G2385R risk factor variant de-stabilizes dimers. Interestingly, we find a marked departure in the kinase activity between G2019S-LRRK2 homo-dimers and wild-type-G2019S hetero-dimers. While the homo-dimeric G2019S-LRRK2 exhibits the typical robust enhancement of kinase activity, hetero-dimers comprised of wild-type (WT) and G2019S-LRRK2 exhibit kinase activity similar to WT. Dimeric complexes of specific mutant forms of LRRK2 show reduced stability following an in vitro kinase reaction, in LRRK2 mutants for which the kinase activity is similar to WT. Phosphorylation of the small GTPase Rab10 follows a similar pattern in which hetero-dimers of WT and mutant LRRK2 show similar levels of phosphorylation of Rab10 to WT homo-dimers; while the levels of pRab10 are significantly increased in cells expressing mutant homo-dimers. Interestingly, while the risk variant G2385R leads to a de-stabilization of LRRK2 dimers, those dimers possess significantly elevated kinase activity. The vast majority of familial LRRK2-dependent PD cases are heterozygous; thus, these findings raise the possibility that a crucial factor in disease pathogenesis may be the accumulation of homo-dimeric mutant LRRK2.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação de Sentido Incorreto , Doença de Parkinson/enzimologia , Multimerização Proteica , Substituição de Aminoácidos , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosforilação/genética , Estrutura Quaternária de Proteína , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 293(46): 17853-17862, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275018

RESUMO

In skeletal muscle, the Rab GTPase-activating (GAP) protein TBC1D1 is phosphorylated by AKT and AMP-activated protein kinase (AMPK) in response to insulin and muscle contraction. Genetic ablation of Tbc1d1 or mutation of distinct phosphorylation sites impairs intracellular GLUT4 retention and GLUT4 traffic, presumably through alterations of the activation state of downstream Rab GTPases. Previous studies have focused on characterizing the C-terminal GAP domain of TBC1D1 that lacks the known phosphorylation sites, as well as putative regulatory domains. As a result, it has been unclear how phosphorylation of TBC1D1 would regulate its activity. In the present study, we have expressed, purified, and characterized recombinant full-length TBC1D1 in Sf9 insect cells via the baculovirus system. Full-length TBC1D1 showed RabGAP activity toward GLUT4-associated Rab8a, Rab10, and Rab14, indicating similar substrate specificity as the truncated GAP domain. However, the catalytic activity of the full-length TBC1D1 was markedly higher than that of the GAP domain. Although in vitro phosphorylation of TBC1D1 by AKT or AMPK increased 14-3-3 binding, it did not alter the intrinsic RabGAP activity. However, we found that TBC1D1 interacts through its N-terminal PTB domains with the cytoplasmic domain of the insulin-regulated aminopeptidase, a resident protein of GLUT4 storage vesicles, and this binding is disrupted by phosphorylation of TBC1D1 by AKT or AMPK. In summary, our findings suggest that other regions outside the GAP domain may contribute to the catalytic activity of TBC1D1. Moreover, our data indicate that recruitment of TBC1D1 to GLUT4-containing vesicles and not its GAP activity is regulated by insulin and contraction-mediated phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cistinil Aminopeptidase/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutação , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Sf9 , Spodoptera
20.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L567-L577, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652497

RESUMO

Inhibition of the mevalonate pathway using statins has been shown to be beneficial in the treatment of acute lung injury (ALI). Here, we investigated whether partial inhibition of this pathway by targeting geranylgeranyl pyrophosphate synthase large subunit 1 (GGPPS1), a catalase downstream of the mevalonate pathway, was effective at treating lung inflammation in ALI. Lipopolysaccharide (LPS) was intratracheally instilled to induce ALI in lung-specific GGPPS1-knockout and wild-type mice. Expression of GGPPS1 in lung tissues and alveolar epithelial cells was examined. The severity of lung injury and inflammation was determined in lung-specific GGPPS1 knockout and wild-type mice by measuring alveolar exudate, neutrophil infiltration, lung injury, and cell death. Change in global gene expression in response to GGPPS1 depletion was measured using mRNA microarray and verified in vivo and in vitro. We found that GGPPS1 levels increased significantly in lung tissues and alveolar epithelial cells in LPS-induced ALI mice. Compared with wild-type and simvastatin treated mice, the specific deletion of pulmonary GGPPS1 attenuated the severity of lung injury by inhibiting apoptosis of AECs. Furthermore, deletion of GGPPS1 inhibited LPS-induced inflammasome activation, in terms of IL-1ß release and pyroptosis, by downregulating NLRP3 expression. Finally, downregulation of GGPPS1 reduced the membrane expression of Ras-related protein Rab10 and Toll-like receptor 4 (TLR4) and inhibited the phosphonation of IκB. This effect might be attributed to the downregulation of GGPP levels. Our results suggested that inhibition of pulmonary GGPPS1 attenuated LPS-induced ALI predominantly by suppressing the NLRP3 inflammasome through Rab10-mediated TLR4 replenishment.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Transgênicos , Pneumonia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA