Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Exp Parasitol ; 267: 108847, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414114

RESUMO

The DNA of protozoan parasites is highly susceptible to damage, either induced by environmental agents or spontaneously generated during cellular metabolism through reactive oxygen species (ROS). Certain phases of the cell cycle, such as meiotic recombination, and external factors like ionizing radiation (IR), ultraviolet light (UV), or chemical genotoxic agents further increase this susceptibility. Among the various types of DNA damage, double-stranded breaks (DSBs) are the most critical, as they are challenging to repair and can result in genetic instability or cell death. DSBs caused by environmental stressors are primarily repaired via one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). In multicellular eukaryotes, NHEJ predominates, but in unicellular eukaryotes such as protozoan parasites, HR seems to be the principal mechanism for DSB repair. The HR pathway is orchestrated by proteins from the RAD52 epistasis group, including RAD51, RAD52, RAD54, RAD55, and the MRN complex. This review focuses on elucidating the diverse roles and significance of RAD51 recombinase and its paralogs in protozoan parasites, such as Acanthamoeba castellanii, Entamoeba histolytica (Amoebozoa), apicomplexan parasites (Chromalveolata), Naegleria fowleri, Giardia spp., Trichomonas vaginalis, and trypanosomatids (Excavata), where they primarily function in HR. Additionally, we analyze the diversity of proteins involved in HR, both upstream and downstream of RAD51, and discuss the implications of these processes in parasitic protozoa.

2.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29444896

RESUMO

Most eukaryotes have two Rad51/RecA family recombinases, Rad51, which promotes recombination during mitotic double-strand break (DSB) repair, and the meiosis-specific recombinase Dmc1. During meiosis, the strand exchange activity of Rad51 is downregulated through interactions with the meiosis-specific protein Hed1, which helps ensure that strand exchange is driven by Dmc1 instead of Rad51. Hed1 acts by preventing Rad51 from interacting with Rad54, a cofactor required for promoting strand exchange during homologous recombination. However, we have a poor quantitative understanding of the regulatory interplay between these proteins. Here, we use real-time single-molecule imaging to probe how the Hed1- and Rad54-mediated regulatory network contributes to the identity of mitotic and meiotic presynaptic complexes. Based on our findings, we define a model in which kinetic competition between Hed1 and Rad54 helps define the functional identity of the presynaptic complex as cells undergo the transition from mitotic to meiotic repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga , Meiose/genética , Mitose , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Imagem Individual de Molécula
3.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266502

RESUMO

Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is well documented for a broad spectrum of human malignancies supporting their growth and progression. Accumulating evidence has also implicated AKT as a potent modulator of anti-cancer therapies via regulation of DNA damage response and repair (DDR) induced by certain chemotherapeutic agents and ionizing radiation (IR). In the present study, we examined the role of AKT signaling in regulating of Rad51 turnover and cytotoxic effects of topoisomerase II inhibitor, doxorubicin (Dox) in soft tissue sarcomas (STS) and gastrointestinal stromal tumors (GIST) in vitro. Blocking of AKT signaling (MK-2206) enhanced cytotoxic and pro-apoptotic effects of Dox in vast majority of STS and GIST cell lines. The phosphorylated form of Akt co-immunoprecipitates with Rad51 after Dox-induced DNA damage, whereas Akt inhibition interrupts this interaction and decreases Rad51 protein level by enhancing protein instability via proteasome-dependent degradation. Inhibition of Akt signaling in Dox-treated cells was associated with the increased number of γ-H2AX-positive cells, decrease of Rad51 foci formation and its colocalization with γ-H2AX foci, thereby revealing unsuccessful DDR events. This was also in consistency with an increase of tail moment (TM) and olive tail moment (OTM) in Dox-treated GIST and STS cells cultured in presence of Akt inhibitor after Dox washout. Altogether, our data illustrates that inhibition of AKT signaling is STS and GIST might potentiate the cytotoxic effect of topoisomerase II inhibitors via attenuating the homology-mediated DNA repair.


Assuntos
Tumores do Estroma Gastrointestinal/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Sarcoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948066

RESUMO

Deregulation of receptor tyrosine kinase (RTK)-signaling is frequently observed in many human malignancies, making activated RTKs the promising therapeutic targets. In particular, activated RTK-signaling has a strong impact on tumor resistance to various DNA damaging agents, e.g., ionizing radiation and chemotherapeutic drugs. We showed recently that fibroblast growth factor receptor (FGFR)-signaling might be hyperactivated in imatinib (IM)-resistant gastrointestinal stromal tumors (GIST) and inhibition of this pathway sensitized tumor cells to the low doses of chemotherapeutic agents, such as topoisomerase II inhibitors. Here, we report that inhibition of FGFR-signaling in GISTs attenuates the repair of DNA double-strand breaks (DSBs), which was evidenced by the delay in γ-H2AX decline after doxorubicin (Dox)-induced DNA damage. A single-cell gel electrophoresis (Comet assay) data showed an increase of tail moment in Dox-treated GIST cells cultured in presence of BGJ398, a selective FGFR1-4 inhibitor, thereby revealing the attenuated DNA repair. By utilizing GFP-based reporter constructs to assess the efficiency of DSBs repair via homologous recombination (HR) and non-homologous end-joining (NHEJ), we found for the first time that FGFR inhibition in GISTs attenuated the homology-mediated DNA repair. Of note, FGFR inhibition/depletion did not reduce the number of BrdU and phospho-RPA foci in Dox-treated cells, suggesting that inhibition of FGFR-signaling has no impact on the processing of DSBs. In contrast, the number of Dox-induced Rad51 foci were decreased when FGFR2-mediated signaling was interrupted/inhibited by siRNA FGFR2 or BGJ398. Moreover, Rad51 and -H2AX foci were mislocalized in FGFR-inhibited GIST and the amount of Rad51 was substantially decreased in -H2AX-immunoprecipitated complexes, thereby illustrating the defect of Rad51 recombinase loading to the Dox-induced DSBs. Finally, as a result of the impaired homology-mediated DNA repair, the increased numbers of hypodiploid (i.e., apoptotic) cells were observed in FGFR2-inhibited GISTs after Dox treatment. Collectively, our data illustrates for the first time that inhibition of FGF-signaling in IM-resistant GIST interferes with the efficiency of DDR signaling and attenuates the homology-mediated DNA repair, thus providing the molecular mechanism of GIST's sensitization to DNA damaging agents, e.g., DNA-topoisomerase II inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Reparo de DNA por Recombinação/efeitos dos fármacos , Transdução de Sinais/genética , Inibidores da Topoisomerase II/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Doxorrubicina/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Histonas/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos
5.
Asian-Australas J Anim Sci ; 33(6): 1023-1033, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32054213

RESUMO

OBJECTIVE: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the ß-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. METHODS: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. RESULTS: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. CONCLUSION: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.

6.
Proc Natl Acad Sci U S A ; 113(41): E6045-E6054, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671650

RESUMO

The DNA strand exchange protein RAD51 facilitates the central step in homologous recombination, a process fundamentally important for accurate repair of damaged chromosomes, restart of collapsed replication forks, and telomere maintenance. The active form of RAD51 is a nucleoprotein filament that assembles on single-stranded DNA (ssDNA) at the sites of DNA damage. The c-Abl tyrosine kinase and its oncogenic counterpart BCR-ABL fusion kinase phosphorylate human RAD51 on tyrosine residues 54 and 315. We combined biochemical reconstitutions of the DNA strand exchange reactions with total internal reflection fluorescence microscopy to determine how the two phosphorylation events affect the biochemical activities of human RAD51 and properties of the RAD51 nucleoprotein filament. By mimicking RAD51 tyrosine phosphorylation with a nonnatural amino acid, p-carboxymethyl-l-phenylalanine (pCMF), we demonstrated that Y54 phosphorylation enhances the RAD51 recombinase activity by at least two different mechanisms, modifies the RAD51 nucleoprotein filament formation, and allows RAD51 to compete efficiently with ssDNA binding protein RPA. In contrast, Y315 phosphorylation has little effect on the RAD51 activities. Based on our work and previous cellular studies, we propose a mechanism underlying RAD51 activation by c-Abl/BCR-ABL kinases.


Assuntos
Nucleoproteínas/metabolismo , Fosfotirosina/metabolismo , Rad51 Recombinase/metabolismo , Mimetismo Biológico , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Recombinação Homóloga , Humanos , Hidrólise , Modelos Moleculares , Mutação , Nucleoproteínas/química , Fosforilação , Fosfotirosina/química , Fosfotirosina/genética , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/genética , Proteínas Recombinantes
7.
J Gynecol Oncol ; 34(4): e45, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807748

RESUMO

OBJECTIVE: The RAD51 assay is a recently developed functional assay for homologous recombination deficiency (HRD) that reflects real-time HRD status. We aimed to identify the applicability and predictive value of RAD51 immunohistochemical expression in pre- and post-neoadjuvant chemotherapy (NAC) samples of ovarian high-grade serous carcinoma (HGSC). METHODS: We evaluated the immunohistochemical expression of RAD51/geminin/γH2AX in ovarian HGSC before and after NAC. RESULTS: In pre-NAC tumors (n=51), 74.5% (39/51) showed at least 25% of γH2AX-positive tumor cells, suggesting endogenous DNA damage. The RAD51-high group (41.0%, 16/39) showed significantly worse progression-free survival (PFS) compared to the RAD51-low group (51.3%, 20/39) (p=0.032). In post-NAC tumors (n=50), the RAD51-high group (36.0%, 18/50) showed worse PFS (p=0.013) and tended to present worse overall survival (p=0.067) compared to the RAD51-low group (64.0%, 32/50). RAD51-high cases were more likely to progress than RAD51-low cases at both 6 months and 12 months (p=0.046 and p=0.019, respectively). Of 34 patients with matched pre- and post-NAC RAD51 results, 44% (15/34) of pre-NAC RAD51 results were changed in the post-NAC tissue, and the RAD51 high-to-high group showed the worst PFS, while the low-to-low group showed the best PFS (p=0.031). CONCLUSION: High RAD51 expression was significantly associated with worse PFS in HGSC, and post-NAC RAD51 status showed higher association than pre-NAC RAD51 status. Moreover, RAD51 status can be evaluated in a significant proportion of treatment-naïve HGSC samples. As RAD51 status dynamically changes, sequential follow-up of RAD51 status might reflect the biological behavior of HGSCs.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Geminina , Intervalo Livre de Progressão , Rad51 Recombinase
8.
Clin Case Rep ; 11(1): e6810, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698515

RESUMO

Fanconi anemia, FA, is a rare, multi-system disease caused by pathogenic variants in DNA repair genes. We report a novel RAD51 variant in an infant with FA whose tracheobronchomalacia has not been described in FA. His severe presentation expands the phenotype of RAD51-associated FA, reported only in three patients previously.

9.
Front Oncol ; 13: 1047336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761956

RESUMO

Background: Genetic variability in DNA double-strand break repair genes such as RAD51 gene and its paralogs XRCC2、XRCC3 may contribute to the occurrence and progression of breast cancer. To obtain a complete evaluation of the above association, we performed a meta-analysis of published studies. Methods: Electronic databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, were comprehensively searched from inception to September 2022. The Newcastle-Ottawa Scale (NOS) checklist was used to assess all included non-randomized studies. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by STATA 16.0 to assess the strength of the association between single nucleotide polymorphisms (SNPs) in these genes and breast cancer risk. Subsequently, the heterogeneity between studies, sensitivity, and publication bias were performed. We downloaded data from The Cancer Genome Atlas (TCGA) and used univariate and multivariate Cox proportional hazard regression (CPH) models to validate the prognostic value of these related genes in the R software. Results: The combined results showed that there was a significant correlation between the G172T polymorphism and the susceptibility to breast cancer in the homozygote model (OR= 1.841, 95% CI=1.06-3.21, P=0.03). Furthermore, ethnic analysis showed that SNP was associated with the risk of breast cancer in Arab populations in homozygous models (OR=3.52, 95% CI=1.13-11.0, P= 0.003). For the XRCC2 R188H polymorphism, no significant association was observed. Regarding polymorphism in XRCC3 T241M, a significantly increased cancer risk was only observed in the allelic genetic model (OR=1.05, 95% CI= 1.00-1.11, P=0.04). Conclusions: In conclusion, this meta-analysis suggests that Rad51 G172T polymorphism is likely associated with an increased risk of breast cancer, significantly in the Arab population. The relationship between the XRCC2 R188H polymorphism and breast cancer was not obvious. And T241M in XRCC3 may be associated with breast cancer risk, especially in the Asian population.

10.
Cell Oncol (Dordr) ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971644

RESUMO

PURPOSE: TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS: TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS: TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS: Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.

11.
Iran J Public Health ; 51(10): 2231-2243, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36415794

RESUMO

Background: The RAD51 recombinase is involved in homologous recombination and DNA repair. However, the association of RAD51 with the prognosis of adenocarcinoma at the gastroesophageal junction (ACGEJ) is not clear. We aimed to investigate the association of RAD51 with ACGEJ prognosis. Methods: The difference in the expression level of RAD51 between ACGEJ tumors and control tissues in the microarray datasets (GSE159721, GSE74553, and GSE96669) were compared. The online Kaplan-Meier plotter survival analysis and meta-analysis were used to analyze the association of RAD51 with overall survival in pan-cancers. MiRNAs targeting RAD51 were identified and their expression profiles in ACGEJ tumors were analyzed. Functional enrichment analysis was performed for miRNAs of RAD51. Results: RAD51 was upregulated in ACGEJ tumors compared with control tissues (P < 0.05). High RAD51 level was correlated with a poor prognosis in stomach adenocarcinoma and esophageal cancer. The meta-analysis showed that high RAD51 level was correlated with a poor prognosis in TCGA pan-cancers (P = 0.03). Six regulatory miRNAs of RAD51, including hsa-miR-182, hsa-miR-221, and hsa-miR-34a, were downregulated in ACGEJ tumor tissues and were associated with pathways including "fatty acid biosynthesis" and "viral carcinogenesis". Conclusion: RAD51 is a potent prognostic biomarker in ACGEJ. MiRNAs including hsa-miR-182, hsa-miR-221, and hsa-miR-34a might play crucial roles in ACGEJ by regulating the RAD51 gene.

12.
Oncol Rep ; 47(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935059

RESUMO

Although gemcitabine (GEM) has been used to treat bladder cancer (BC) for a number of years, severe adverse events or drug resistance frequently develops. A series of drugs have been proved to sensitize patients to GEM and reduce the side effects. The aim of the present study was to evaluate the potential effects of berberine (BER) on GEM­induced cytotoxicity in BC and to explore the possible underlying mechanisms. T24 and 5637 human BC cell lines were treated with GEM and/or BER before cell proliferation, apoptosis and migration were studied. Oncomine databases and Gene Expression Profiling Interactive Analysis (GEPIA) were used to retrieve RAD51 recombinase (Rad51) mRNA expression. Overexpression plasmid or specific Rad51 small interfering RNA were used to examine the role of Rad51 in drug­treated BC cells. BC model mice were administered with GEM and/or BER before changes in tumor volume, size and Ki67 expression were assessed. BER enhanced GEM­induced cytotoxicity, apoptosis and inhibition of migration, whilst attenuating the GEM­induced upregulation of phosphorylated Akt and Rad51 expression. According to Oncomine and GEPIA analyses, Rad51 was found to be significantly upregulated in BC tissues compared with that in normal tissues, where there was a weak positive correlation between Rad51 and Akt1 expression. Knockdown of Rad51 enhanced GEM­induced cytotoxicity, whilst overexpression of Rad51 reversed the suppressed cell viability induced by BER and GEM. Inactivation of the PI3K/Akt pathway by LY294002 or BER enhanced GEM­induced cytotoxicity and downregulated Rad51 expression, whilst overexpression of constitutively active Akt restored Rad51 expression and cell viability that was previously decreased by BER and GEM. BER additively inhibited tumor growth and Ki67 expression when combined with GEM in vivo. These results suggest that BER can enhance GEM­induced cytotoxicity in BC by downregulating Rad51 expression through inactivating the PI3K/Akt pathway, which may represent a novel therapeutic target for BC treatment.


Assuntos
Berberina/farmacologia , Desoxicitidina/análogos & derivados , Sinergismo Farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rad51 Recombinase/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Transporte , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Gencitabina
13.
Anim Biosci ; 35(1): 126-137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293843

RESUMO

OBJECTIVE: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine ß-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). METHODS: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine ß-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). RESULTS: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMR-related genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. CONCLUSION: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.

14.
Cancers (Basel) ; 11(3)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909596

RESUMO

Genomic instability through deregulation of DNA repair pathways can initiate cancer and subsequently result in resistance to chemo and radiotherapy. Understanding these biological mechanisms is therefore essential to overcome cancer. RAD51 is the central protein of the Homologous Recombination (HR) DNA repair pathway, which leads to faithful DNA repair of DSBs. The recombinase activity of RAD51 requires nucleofilament formation and is regulated by post-translational modifications such as phosphorylation. In the last decade, studies have suggested the existence of a relationship between receptor tyrosine kinases (RTK) and Homologous Recombination DNA repair. Among these RTK the c-MET receptor is often overexpressed or constitutively activated in many cancer types and its inhibition induces the decrease of HR. In this study, we show for the first time that c-MET is able to phosphorylate the RAD51 protein. We demonstrate in vitro that c-MET phosphorylates four tyrosine residues localized mainly in the subunit-subunit interface of RAD51. Whereas these post-translational modifications do not affect the presynaptic filament formation, they strengthen its stability against the inhibitor effect of the BRC peptide obtained from BRCA2. Taken together, these results confirm the role of these modifications in the regulation of the BRCA2-RAD51 interaction and underline the importance of c-MET in DNA damage response.

15.
Methods Enzymol ; 600: 157-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458757

RESUMO

The RAD51 DNA strand exchange protein plays an important role in maintaining the integrity of the human genome. It promotes homology-directed DNA repair by exchanging strands between the damaged and the intact DNA molecules. It also plays an important role in stabilizing distressed DNA replication forks. When overexpressed or misregulated, however, RAD51 contributes to "rogue," genome destabilizing events that can lead to cancer, cell death, and to acquisition of chemotherapy resistance by cancerous cells. Human RAD51 is, therefore, an important and highly coveted anticancer drug target. Biochemical, biophysical, and structural studies of the human RAD51 and establishment of its structure-activity relationship require purification of large quantities of protein. In this chapter we describe a robust method for expression and purification of human RAD51 and the methods for assessing its activity based on the single-strand DNA-binding stoichiometry and its capacity to carry out the DNA strand exchange reaction.


Assuntos
DNA de Cadeia Simples/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência/instrumentação , Humanos , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Autophagy ; 11(2): 239-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25701194

RESUMO

PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Autofagia/efeitos dos fármacos , Dano ao DNA , PTEN Fosfo-Hidrolase/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Autofagia/fisiologia , Cisplatino/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA